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Abstract—Open-vocabulary video visual relationship detection
aims to expand video visual relationship detection beyond anno-
tated categories by detecting unseen relationships between both
seen and unseen objects in videos. Existing methods usually use
trajectory detectors trained on closed datasets to detect object
trajectories, and then feed these trajectories into large-scale
pre-trained vision-language models to achieve open-vocabulary
classification. Such heavy dependence on the pre-trained trajec-
tory detectors limits their ability to generalize to novel object
categories, leading to performance degradation. To address this
challenge, we propose to unify object trajectory detection and
relationship classification into an end-to-end open-vocabulary
framework. Under this framework, we propose a relationship-
aware open-vocabulary trajectory detector. It primarily consists
of a query-based Transformer decoder, where the visual encoder
of CLIP is distilled for frame-wise open-vocabulary object detec-
tion, and a trajectory associator. To exploit relationship context
during trajectory detection, a relationship query is embedded
into the Transformer decoder, and accordingly, an auxiliary
relationship loss is designed to enable the decoder to perceive
the relationships between objects explicitly. Moreover, we propose
an open-vocabulary relationship classifier that leverages the rich
semantic knowledge of CLIP to discover novel relationships.
To adapt CLIP well to relationship classification, we design a
multi-modal prompting method that employs spatio-temporal
visual prompting for visual representation and vision-guided
language prompting for language input. Extensive experiments
on two public datasets, VidVRD and VidOR, demonstrate the
effectiveness of our framework. Our framework is also applied
to a more difficult cross-dataset scenario to further demonstrate
its generalization ability. The code for this paper is available at
https://github.com/wangyongqi558/EOV-MMP-VidVRD.

Index Terms—Open-vocabulary video visual relationship de-
tection; End-to-end framework; Multi-modal prompting; CLIP

I. INTRODUCTION

V IDEO Visual Relationship Detection (VidVRD)
aims to detect objects and their relationships in

videos, typically represented as triplets in the format of
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Fig. 1. (a) Existing Open-VidVRD methods rely on trajectory detectors
trained on closed datasets. (b) The proposed end-to-end model performs Open-
VidVRD directly on the original videos.

⟨subject, relationship, object⟩ [1]. Open-vocabulary Video
Visual Relationship Detection (Open-VidVRD) expands
VidVRD task by training on base categories of objects
and relationships, and testing on both base and novel
categories [2], which has wide applications in real-world
scenarios.

Recent significant progress has been made on open-
vocabulary tasks [3]–[5] by integrating charming large-scale
pre-trained vision-language models [6]–[10]. By learning joint
vision-language embeddings, these pre-trained models can
exploit extensive semantic knowledge of objects, scenes,
actions, and interactions [11]–[16]. Existing Open-VidVRD
methods [2], [17] typically employ prompt learning in pre-
trained models to facilitate open-vocabulary classification of
objects and relationships. These methods firstly use the trajec-
tory detectors pre-trained on closed datasets to detect object
trajectories from videos, and then feed the trajectories into
pre-trained models like [8] for open-vocabulary classification
of objects and relationships, as illustrated in Figure 1(a).
Such heavy reliance on closed-set trajectory detectors limits
their generalization capabilities to unseen object categories.
Additionally, the domain gap between the training data of
trajectory detectors and that of the Open-VidVRD task limits
their adaptability to base categories. As a result, the detected
object trajectories are suboptimal, hindering the subsequent
relationship classification.

To address this challenge, we propose a novel end-to-end
framework for Open-VidVRD, as illustrated in Figure 1(b).
It jointly models object trajectory detection and relationship
classification into a unified framework. Under this framework,
we propose two key components: a relationship-aware open-
vocabulary trajectory detector and an open-vocabulary rela-
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tionship classifier. The trajectory detector primarily consists
of a query-based Transformer decoder in which the visual
encoder of CLIP is distilled for frame-wise open-vocabulary
object detection, and a trajectory associator for generating tra-
jectories. The open-vocabulary relationship classifier leverages
the rich semantic knowledge of CLIP to predict relationships
between the generated object trajectories. By jointly training
the trajectory detector and the relationship classifier, our
framework does not suffer from the domain gap problem
faced by existing methods that rely on pre-trained trajectory
detectors. Moreover, by distilling the visual encoder of CLIP,
our framework enhances the generalization to novel object cat-
egories thanks to CLIP’s powerful representation capabilities.

To exploit the relationship context during trajectory de-
tection, we propose to embed a relationship query into the
query-based Transformer decoder, and design an auxiliary
relationship loss accordingly to explicitly perceive the rela-
tionships between objects when decoding. By incorporating
relationship context into trajectory detection, our framework
enables mutual interactions between trajectory detection and
relationship classification. This mutual interaction fosters a
close coupling that facilitates the joint optimization of both
processes within the end-to-end framework, ensuring that
object trajectories and relationships are simultaneously refined
and accurately detected.

To effectively leverage the knowledge of CLIP into the
video domain during relationship classification, we propose
a multi-modal prompting method that prompts CLIP on both
visual and language sides. Specifically, we design spatio-
temporal visual prompting to imbue CLIP with the capabilities
of spatial and temporal modeling, effectively enhancing the
image encoder of CLIP. Moreover, we design vision-guided
language prompting to exploit CLIP’s comprehensive semantic
knowledge for discovering novel relationships in videos.

Extensive experiments on two public datasets, VidVRD [1]
and VidOR [18], show that our end-to-end framework out-
performs existing state-of-the-art methods, achieving 2.89%
mAP gains on novel relationship categories on the VidVRD
dataset. To further demonstrate the generalization ability of
our method, our framework is also applied to a more difficult
evaluation setting where the base categories of VidOR are
used for training and unseen categories from VidVRD are used
for testing. Under this setting, our framework achieves 9.77%
mAP improvement on trajectory detection and 5.45% mAP
improvement on relationship classification.

In summary, our main contributions are as follows:
1) We propose an end-to-end Open-VidVRD framework,

which unifies trajectory detection and relationship clas-
sification, thus eliminating the need for pre-trained tra-
jectory detectors and improving the generation to unseen
categories.

2) We propose a relationship-aware open-vocabulary trajec-
tory detector, which distills significant knowledge from
CLIP and meanwhile perceives the relationship context
via a dedicated relationship query and an auxiliary
relationship loss.

3) We also propose an open-vocabulary relationship classi-
fier with a multi-modal prompting method that prompts

CLIP on both the visual and language sides to enhance
the generalization to novel relationship categories.

A preliminary version of this paper, named OV-MMP [17],
published in AAAI 2024. The differences between this paper
and the previous version are summarized as follows: (1) This
paper integrates the open-vocabulary relationship classifier
with the multi-modal prompting method into a novel end-to-
end framework, eliminating the reliance on pre-trained trajec-
tory detector used in OV-MMP, enabling the joint optimization
of trajectory detection and relationship classification. (2) This
paper proposes a relationship-aware open-vocabulary trajec-
tory detector that distills significant knowledge from CLIP
visual encoder into the query-based Transformer decoder while
explicitly perceiving the relationship context by designing a
relationship query and an auxiliary relationship loss. (3) This
paper further validates the generalization capability of our
end-to-end framework by designing extensive experiments,
including a new setting in which we train the model on the
base categories of the VidOR dataset and test it on categories
that are unseen during training from the VidVRD dataset.

II. RELATED WORK

A. Video Visual Relationship Detection

Video Visual Relationship Detection (VidVRD) focuses on
detecting interactions between objects over time, necessitating
a comprehensive understanding of both spatial distribution and
temporal dynamics of objects within videos [1]. Numerous
studies have explored various VidVRD methods, which can be
broadly categorized into spatio-temporal modeling, relation-
ship refinement, video relationship debiasing, and end-to-end
video relationship detection.

Spatio-temporal modeling methods design various architec-
tures to learn dynamic interactions between objects across
both spatial and temporal dimensions. Qian et al. [19], Tsai et
al. [20], and Liu et al. [21] represent videos as fully connected
spatio-temporal graphs and adopt graph convolution networks
to reason about the relationships between objects. Cong et
al. [22] use a spatial Transformer encoder to extract spatial
context and intra-frame relationships, and a temporal decoder
to understand inter-frame dynamic relationships.

Relationship refinement methods aim to learn fine-grained
relationship representation between objects. Shang et al. [23]
propose an iterative inference module that iteratively refines
one component of a relationship triplet by using the prediction
results of the other two components. Chen et al. [24] decouple
complex relationships across multiple video frames into fine-
grained relationships on single frames to capture frame-wise
subtle interactions between objects.

Video relationship debiasing methods aim to address the
long-tail distribution problem in video relationship datasets.
Xu et al. [25] apply meta-learning to train an unbiased
VidVRD model. They divide the training set into a support
set and multiple query sets with different data distributions,
where the support set is used to train the model, the query
sets are used to optimize the model. Dong et al. [26] divide
long-tail datasets into balanced sub-datasets, and individually
train a relationship classifier for each subset. Then, they jointly
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optimize the classifiers on the full training set and distill the
unbiased knowledge in each classifier into a comprehensive
classifier. Lin et al. [27] design an asymmetrical re-weighting
loss function that adjusts the weights for each relationship
category by using the effective number of samples proposed
in [28].

End-to-end video relationship detection methods [29], [30]
have been proposed in recent years. They jointly optimize both
the trajectory detector and relationship classifier to improve the
consistency of the object and relationship context.

All the above-mentioned methods are designed for closed
settings where the training and test data share the same
object and relationship categories, thus limiting their ability
to generalize to unseen object and relationship categories.
Consequently, they struggle to effectively adapt to the diverse
and dynamic scenarios encountered in real-world videos.

B. Open-vocabulary Visual Relationship Detection

With the advancement of vision-language pre-training tech-
niques, open-vocabulary visual tasks, such as object detec-
tion [31], spatio-temporal action localization [32], and video-
text matching [33], have gained widespread attention for their
ability to generalize beyond pre-defined categories.

The task of open-vocabulary visual relationship detec-
tion [2], [34] has been proposed recently, which focuses on
detecting visual relationship instances involving objects and
relationships that are unseen in the training data. The first
study [34] on this task conducts contrastive learning on mas-
sive amounts of data to align the visual and textual represen-
tations of both objects and relationships, and identifies novel
categories through similarity matching between visual content
and textual descriptions. Further advancing this approach,
Yuan et al. [35] propose to enhance relational language-image
pre-training by accelerating convergence through early cross-
modal fusion and improving scalability with pseudo-labeled
relational annotations.

Due to the high computational demands of contrastive
learning with large-scale data, many researchers resort to
using rich semantic knowledge in existing pre-trained vision-
language models [8], [9], [36] to recognize novel categories.
Li et al. [37] use BLIP [9] to generate relationship triplets by
feeding images and text prompts, and then replace synonyms
in the generated triplets with the target categories through
text similarity matching. Li et al. [38] enhance CLIP [8] to
discover novel relationships by generating fine-grained visual
and textual content. Specifically, they use object detection
results to decompose the visual content into subject-related,
object-related, and spatial-related fine-grained components,
and adopt large language models (LLMs) to generate class-
specific descriptive prompts for each component. Yu et al. [39]
also use CLIP for open-vocabulary relationship classification,
and propose a prompting method that concatenates learnable
vectors to both textual and visual input to learn task-related
knowledge. Moreover, they take the visual features and learn-
able text prompts into BERT [40] to generate comprehen-
sive and fine-grained object relationships for expanding the
training data. Zhao et al. [41] unify inconsistent label spaces

across multiple datasets by leveraging the aligned vision-text
semantic space in CLIP. Zhu et al. [42] employ a mask-based
approach to unify multiple relationship understanding tasks,
using CLIP text prompts to guide visual relationship segmen-
tation and a query-based Transformer to generate relational
triplets.

The above-mentioned methods are typically designed for
images and can not be directly applied to video domains. In
recent years, Gao et al. [2] pioneer open-vocabulary video
visual relationship detection (Open-VidVRD) by using the pre-
trained video-text model ALPro [36] for similarity matching
between visual and linguistic modality features. However, this
method relies heavily on a trajectory detector pre-trained on
closed datasets, thus limiting the ability to generalize to unseen
object categories.

In this paper, we propose a novel end-to-end Open-VidVRD
framework that jointly models object trajectory detection
and relationship classification, eliminating the reliance on
pre-trained trajectory detectors. Moreover, by leveraging the
knowledge in CLIP through a novel multi-modal prompting
method, our framework adapts well to diverse real-world
scenarios.

C. Prompting CLIP

Vision-language pre-trained models [8], [43]–[45] have
demonstrated significant progress in many downstream vision-
language tasks. As one of the most successful vision-language
pre-trained models, CLIP [8], is extensively pre-trained using
400 million image-text pairs from the Internet, resulting in a
vision-language embedding space with comprehensive seman-
tic knowledge.

Various text prompting methods have emerged to effectively
transfer knowledge from CLIP to downstream tasks. Zhou et
al. [46] convert handcraft text prompts into learnable vectors to
learn task-related knowledge. Zhou et al. [47] further propose
conditional text prompts, which integrate learnable vectors
with visual features, to learn the image-specific knowledge.
Sun et al. [48] adapt CLIP to a multi-label image recognition
task by learning pairs of positive and negative text prompts to
ensure independent binary classification for each category.

Meanwhile, many visual prompting methods for CLIP have
been widely explored. Jia et al. [49] integrate the input images
with learnable vectors to learn task-related visual cues. Wang
et al. [50] and Xu et al. [51] incorporate learnable tokens into
the visual encoder to refine the visual features, making them
more suitable for downstream tasks.

To fully exploit the multi-modal co-optimization potential
of CLIP, multi-modal prompting methods [52]–[54] have been
proposed. These methods introduce learnable vectors to both
visual and textual modalities, and couple them to facilitate
joint optimization. All these methods primarily focus on
image domain tasks. In contrast, our multi-modal prompting
method is specifically designed for the more challenging
Open-VidVRD task.
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Fig. 2. (a) The proposed end-to-end framework, where the object trajectories and their categories are predicted by the relationship-aware open-vocabulary
trajectory detector, and the relationship categories are predicted by the open-vocabulary relationship classifier. (b) The relationship-aware open-vocabulary
trajectory detector. (c) The open-vocabulary relationship classifier.

III. OUR FRAMEWORK

A. Overview

Video Visual Relationship Detection (VidVRD) aims to
detect instances of visual relationships within a video V =
{ft}Nv

t=1, where ft represents the frame at time t, and Nv is
the number of frames in V . Each visual relationship instance is
represented by a tuple (cs, cr, co, T s, T o), where cs, cr, and co

denote the categories of the subject, relationship, and object,
respectively. T k, with k ∈ {s, o}, represents the trajectory of
subjects or objects, comprising a sequence of bounding boxes
(bkts , . . . , b

k
tj , . . . , b

k
te), where bktj denotes the corresponding

bounding box at time tj , with ts and te being the start time
and end time of the trajectory, respectively. In Open-VidVRD,
the categories of objects and relationships are divided into
base and novel splits: base objects (CO

b ), novel objects (CO
n ),

base relationships (CR
b ), and novel relationships (CR

n ). Only
base categories are used during the training phase, and all
categories are used during the test phase.

We propose an end-to-end Open-VidVRD framework that
directly detects relationships between objects from input raw
videos. It comprises two main components: a relationship-
aware open-vocabulary trajectory detector (Sec. III-B) and
an open-vocabulary relationship classifier (Sec. III-C). An
overview of our framework is illustrated in Figure 2 (a).

B. Relationship-aware Open-vocabulary Trajectory Detection

For each input video V , we first use a ViT-based visual
encoder [55] of CLIP to extract visual features for each frame,
represented by

(F g
t , F

p
t ) = V(V ), (1)

where V(·) denotes the visual encoder of CLIP, F g
t and F p

t

denote the global feature and the patch feature of the t-
th frame, respectively. We then feed the patch features into
a relationship-aware open-vocabulary trajectory detector to
obtain object trajectories, represented by

(Ti, ci, Ei) = Φ(F p
1 , F

p
2 , . . . , F

p
Nv

), (2)
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where Φ(·) denotes the trajectory detector. Ti is the i-th
trajectory, where i ∈ {1, ..., Nt} and Nt is the trajectory
number in the video. ci denotes the object category of the i-th
trajectory. Ei represents the visual feature of the i-th trajectory.

The trajectory detection process begins with a query-
based Transformer decoder that distills the visual encoder of
CLIP to perform frame-wise open-vocabulary object detection
(Sec. III-B1). Then the frame-wise object detection results
are enhanced by an auxiliary object classifier (Sec. III-B2)
that leverages CLIP to discover novel object categories. Fi-
nally, a trajectory associator (Sec. III-B3) connects the frame-
wise detection results to generate coherent object trajectories
throughout the video. A trajectory memory is built to store the
trajectory detection results, which are then used for subsequent
open-vocabulary relationship classification.

We further propose a relationship query as input for the
query-based Transformer decoder and design a corresponding
auxiliary relationship loss (Sec. III-B4) to make the decoder
explicitly perceive the relationship context. Figure 2 (b) il-
lustrates the details of the proposed relationship-aware open-
vocabulary trajectory detector.

1) Frame-wise Open-vocabulary Object Detection: We
feed the patch feature together with object queries and a rela-
tionship query into the query-based Transformer decoder [56]
to obtain the query results. The object query results are then
processed through prediction heads to generate frame-wise
object detection results, and the relationship query result is
used to calculate the auxiliary relationship loss.

Object Query. We define a set of Nq learnable object
queries, denoted by Q = {q1, q2, . . . , qNq}, to process image
context and output predictions in parallel. The object queries
are shared across all video frames.

Relationship Query. We propose a relationship query,
denoted as R, which interacts with the patch feature F p to
perceive the relationship context. The relationship query is
shared across all video frames.

Query-based Transformer Decoder. The query-based
Transformer decoder has Nl layers, and each layer is com-
posed of alternating self-attention and cross-attention modules.
In the l-th layer, the object queries Ql and relationship query
Rl first interact with each other through the self-attention
module. The resulting outputs, Q̃l and R̃l, are used to extract
features from the patch feature F p through the cross-attention
module. This process is formulated as

(Q̃l, R̃l) = SelfAttnl
(
[Ql;Rl]

)
,

(Q̂l, R̂l) = CrossAttnl
(
[Q̃l; R̃l], F p

)
,

(3)

where Q̂l and R̂l represent the output of the l-th decoder layer,
and serve as the input Ql+1 and Rl+1 for the (l+1)-th layer.
The final output of the query-based Transformer decoder is
represented by Q̂Nl = {q̂1, q̂2, . . . , q̂Nq} and R̂Nl .

Prediction Heads. For each object query result q̂ ∈ Q̂Nl ,
its corresponding object bounding box is predicted as

b = Mbox(q̂), (4)

where b is the predicted bounding box, Mbox(·) is the bound-
ing box regression head, consisting of two linear layers. The
classification score of object category c ∈ C is represented as

p(c) =
exp(cos(Memb(q̂), e

c
txt)/τ)∑

c′∈C exp(cos(Memb(q̂), e
c′

txt)/τ)
, (5)

where C = CO
b during the training phase and C = CO

b ∪ CO
n

during the test phase, τ is a temperature parameter, Memb(·)
is the object embedding head consisting of two linear layers,
cos(·, ·) is the cosine similarity matching function, and ectxt
denotes the text feature of object category c extracted by
CLIP. We retain only the bounding boxes where the maximum
value of p exceeds a threshold ϵ (an ablation is presented in
Table VIII), and discard the other bounding boxes. For the re-
tained bounding boxes, we create a mask M and apply Region
of Interest (RoI) Pooling on the original patch feature F p to
extract a fixed-size feature vector as the object embedding E ,
formulated as

E = P(F p,M), (6)

where P(·) denotes the RoI Pooling function.
For the relationship query result R̂Nl , we predict the score

of relationship category r ∈ CR
b by

p(r) = Mrel(R̂
Nl), (7)

where Mrel(·) is the relationship classification head, consist-
ing of two linear layers.

2) Auxiliary Object Classification: To further improve the
classification performance of novel object categories, we de-
sign an auxiliary object classifier that uses CLIP to classify
the object embeddings obtained in Eq. 6 by calculating their
similarity with text features. To fully leverage the rich semantic
knowledge of CLIP, we propose a vision-guided prompting
method. Specifically, we feed the object embeddings into a
vision-guided prompting network (VPN) to generate learnable
conditional language prompts. These generated prompts are
then combined with learnable continuous language prompts
as input for the text encoder of CLIP.

Learnable Continuous Language Prompts. For each ob-
ject category [OBJ], Nς -token language prompts are initialized
by ς = [ς1, ς2, · · · , ςNς

], where [OBJ] ∈ CO
b when training

and [OBJ] ∈ CO
n ∪ CO

b when testing,
Learnable Conditional Language Prompts. For each ob-

ject category [OBJ], Nζ-token learnable conditional language
prompts are learned by taking into account the corresponding
visual feature, represented as

ζ = [ζ1, ζ2, · · · , ζNζ
] = φ(E), (8)

where φ(·) denotes the vision-guided prompting network,
consisting of two linear layers. E is the object embedding.

Learnable Vision-guided Language Prompts. We con-
catenate the tokens of learnable continuous language prompts
and tokens of learnable conditional language prompts in-
terlaced, and then insert the [OBJ] token into the end of
the token sequence, to obtain the final language prompts
ȷOBJ =

[
ς1, ζ1, ς2, ζ2, · · · , ςNς

, ζNζ
,OBJ

]
. The text feature

of the object category c is denoted as

jc = T (ȷc), (9)
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where T (·) is the text encoder of CLIP.
The auxiliary classification score of object category c ∈ C

is represented as

p̃(c) =
exp(cos(E , jc)/τ)∑

c′∈C exp(cos(E , jc′)/τ)
. (10)

The final frame-wise object classification score is represented
as

p̂(c) =

{
(1− α)p(c) + αp̃(c) if c ∈ CO

b ,

(1− β)p(c) + βp̃(c) if c ∈ CO
n ,

(11)

where α, β ∈ [0, 1] are weighting factors for the base and
novel object categories, respectively.

3) Trajectory Association: We employ a feature-based as-
sociation algorithm [57] that links frame-wise detection results
that are spatially close and visually similar to generate object
trajectories (T1, T2, ..., TNt), where Nt is the number of tra-
jectories in the video.

For the i-th trajectory, its object classification score Pi is
calculated by averaging the final frame-wise object classifica-
tion scores, formulated as

P̂i =
1

te − ts + 1

te∑
t=ts

p̂it, (12)

where p̂it represents the final classification score of the i-th
trajectory at the t-th frame, ts and te are the start and end time
of the trajectory, respectively. The predicted object category of
the i-th trajectory is given by

ci = argmax
c
P̂i(c). (13)

The visual feature of the i-th trajectory is represented as

Ei = {E i
t}

te
t=ts

, (14)

where E i
t is the object embedding of the i-th trajectory at the

t-th frame. (Ti, ci, Ei) are stored in the trajectory memory for
subsequent relationship classification.

4) Training Loss: We use a focal loss [58] for object
classification, and an L1 loss and a GIoU loss [59] for box
regression.

Distillation Loss. We design a distillation loss to distill the
knowledge from CLIP’s visual encoder for frame-wise open-
vocabulary object detection, formulated as

Lo
dis =

1

Nb
·
∑Nb

n=1
∥en − zn∥1, (15)

where Lo
dis represents the distillation loss, Nb denotes the total

number of the retained bounding boxes in the video, en is the
visual feature of the n-th bounding box extracted by CLIP,
and zn is the corresponding object query result encoded by
the object embedding head, i.e., Memb(q̂) in Eq. 5.

Auxiliary Relationship Loss. We propose an auxiliary re-
lationship loss, calculated using Binary Cross-Entropy (BCE),
to enable the decoder to explicitly perceive the relationships
between objects. The object relationships are categorized into
dynamic and static types. Dynamic relationships change sig-
nificantly over time and require multiple video frames to be
assessed together to make a judgment. For example, a dynamic
relationship such as “run past” involves motion that unfolds

over multiple frames, which means that the relationship be-
tween objects can only be understood by analyzing how the
scene evolves over time. In contrast, static relationships remain
relatively constant and can be determined from a single video
frame. For example, a static relationship such as “lie behind”
describes a stable spatial configuration between objects that
does not require temporal tracking. Once the relative position
is established in a single frame, the relationship remains clear.

To emphasize the importance of static categories for un-
derstanding frame-wise relationships, we adjust the BCE loss
with a predefined weight λs, ensuring that static relationships
receive appropriate emphasis in the learning process. The
auxiliary relationship loss Lo

rel is formulated as

Lo
rel = Ld + λsLs,

Ld =
1

Nv
·
∑Nv

t=1
BCE(rdt , r̂

d
t ),

Ls =
1

Nv
·
∑Nv

t=1
BCE(rst , r̂

s
t ),

(16)

where rdt and rst represent the predicted scores of dynamic
and static relationship categories in the t-th video frame,
respectively, and r̂dt and r̂st represent the ground-truth labels
of dynamic and static relationship categories, respectively. Nv

is the number of frames.
The overall training loss of our relationship-aware open-

vocabulary trajectory detector is given by

Lo = λ1Lo
foc + λ2Lo

l1 + λ3Lo
iou + λ4Lo

dis + λ5Lo
rel, (17)

where Lo
foc, Lo

l1, Lo
iou, Lo

dis, and Lo
rel represent the focal loss,

L1 loss, GIoU loss, distillation loss and auxiliary relationship
loss, respectively. Note that all the aforementioned losses are
calculated using the frame-level object detection results.

C. Open-vocabulary Relationship Classification

We pair the detected object trajectories with temporal over-
lap in the trajectory memory and denote each trajectory pair as
(T s, cs, Es, T o, co, Eo), where T s, cs, and Es represent the
trajectory, object category, and visual feature of the subject in
the trajectory pair, respectively, and T o, co, and Eo represent
the trajectory, object category, and visual feature of the object
in the trajectory pair. We extract the visual features of the
background of trajectory pair by aggregating the global feature
of each frame, denoted as Eh = {F g

t }
te
t=ts

, where F g
t is the

global visual feature (extracted in Eq. 1) of the t-th video
frame, ts and te are the start and end frames of the trajectory
pair. Then we feed the visual features of the subject, object,
and background into an open-vocabulary relationship classifier
which uses CLIP to generate the relationship classification
results by calculating the similarity between the visual features
and text features, represented by

cr = Ψ(Es, Eo, Eh), (18)

where cr represents the predicted relationship category label,
Ψ(·) represents the open-vocabulary relationship classifier.

To adapt CLIP well to relationship classification, we pro-
pose a multi-modal prompting method that applies prompt
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learning to both visual and textual branches of CLIP. Specifi-
cally, we propose a spatio-temporal visual prompting method
(Sec. III-C1) to capture dynamic contexts, and a vision-guided
language prompting method (Sec. III-C2) to exploit CLIP’s
comprehensive semantic knowledge for discovering unseen
relationship categories. Figure 2 (c) illustrates the details of
the proposed open-vocabulary relationship classifier.

1) Spatio-temporal Visual Prompting: We use standard
Transformer blocks to model the sptaio-temporal relationships
between objects. To reduce the computational complexity,
we decouple the spatio-temporal modeling into separate and
successive modules, namely spatial modeling and temporal
modeling.

Spatial Modeling. Spatial relationships between objects are
typically defined by their positional orientations, such as being
in front of or above each other. Therefore, spatial modeling
requires combining three key elements: features of the subject
region, features of the object region, and features representing
the background (i.e. the whole image). This process involves
modeling interactions between objects and their background
to capture spatial context, thus enhancing object features.

Given the features of the trajectory pair, denoted by Ek, k ∈
{s, o, h}, we add two types of learnable embeddings: posi-
tional embedding ϱk related to the normalized bounding box,
and role embedding ρk. These two types of embeddings are
learned and shared across all video frames. The visual features
are updated as follows:

(v̇s, v̇o, v̇h) = STrans(Is, Io, Ih), (19)

where Ik = Ek+ϱk+ρk, k ∈ {s, o, h}, and STrans(·) denotes
the spatial Transformer blocks.

Temporal Modeling. Temporal relationships of objects are
time-dependent, such as moving toward or away, so the inputs
for temporal modeling include visual features and temporal
embeddings. For simplicity, the same temporal modeling is
applied to different roles, i.e., subject, object, and their back-
ground in this paper. Through the exploration of dynamic state
transformations, the visual features are systematically updated.

Given the spatially encoded visual features v̇ =
{v̇s

t , v̇
o
t , v̇

h
t }

te
t=ts

, for each role, we collect the corresponding
features across all frames, denoted as v̇k = {v̇k

t }
te
t=ts

, where
k ∈ {s, o, h}. We then add temporal embedding θt, which is
related to frame t and shared across all roles. For each role,
the visual features are updated by

v̈k = {v̈k
t }

te
t=ts

= TTrans(İ
k

ts
, İ

k

ts+1, · · · , İ
k

te
), (20)

where İ
k

t = v̇k
t + θt, and TTrans(·) denotes the temporal

Transformer blocks.
2) Vision-guided Language Prompting: Similar to

Sec. III-B2, we construct vision-guided language prompts as

ℓkREL =
[
ςk1 , ζ

k
1 , ς

k
2 , ζ

k
2 , · · · ,REL, · · · , ςkNς

, ζk
Nζ

]
, (21)

where k ∈ {s, o, h} and [REL] ∈ CR
b during training and

[REL] ∈ CR
n ∪ CR

b during testing. For each visual region, the
final text features of relationship category r are given by

lkr = T (ℓkr ), (22)

where T (·) is the text encoder of CLIP.

3) Training Loss: The training loss of the open-vocabulary
relationship classifier consists of three parts: a relationship
classification loss Lr

rel, an object classification loss Lr
obj , and

an interaction loss Lr
int, as shown in Figure 2 (c). The overall

training loss is given by

Lr = Lr
rel + γLr

obj + δLr
int. (23)

Relationship Classification Loss. Given the visual features
v̈k and the text features lkr , the prediction score of the
relationship category r is calculated by

ŷrelr = σ(cos(ṽ, l̃r)), (24)

where ṽ = ψ([v̈s; v̈o; v̈h]), ψ(·) denotes the relationship
mapping layer in Figure 2 (c), l̃r = [lsr; l

o
r; l

h
r ], σ(·) is

the sigmoid function, cos(·, ·) is the cosine similarity. The
relationship classification loss is formulated by using the BCE
loss:

Lr
rel =

1

|CR
b |

·
∑

r∈CR
b

BCE(ŷrelr , yrelr ), (25)

where yrelr = 1 when r equals to the ground-truth relationship
category, otherwise yrelr = 0.

Object Classification Loss. To avoid the visual feature
drift caused by spatio-temporal visual prompting, we introduce
an object classification loss to enforce the visual features
after spatial modeling to have the same object distinguishing
capability as the original CLIP. Specifically, after the spatial
modeling, we collect the subject and object features from
all frames and average them as v̄k = avg({ϕ(v̇k

t )}Tt=0),
k ∈ {s, o} and ϕ(·) denotes the object mapping layer, as
shown in Figure 2 (c). Meanwhile, we extract the text features
for all subject or object categories by feeding the handcrafted
prompts (i.e., “a photo of [OBJ]”) into the text encoder
of CLIP, where [OBJ] can be replaced with the names of
subjects or objects. The similarity between the visual features
and the text features of object category c is calculated by
ŷkc = cos(v̄k, l̂c), k ∈ {s, o}. Finally, the object classification
loss is computed over all object categories using the cross-
entropy loss (CE):

Lr
obj = CE(ŷs, ys) + CE(ŷo, yo), (26)

where ŷs is the predicted subject similarity between visual
features and text features of base object categories (CO

b ), and
ŷo is the corresponding predicted object similarity. ys and
yo denote the ground-truth category labels of the subject and
object, respectively.

Interaction Loss. There may be no annotated relationships
between some subjects and objects, that is, there is no in-
teraction. For each pair of subject and object, if there are
any relationship categories between them in video frame t,
we set the ground-truth interaction by yintt = 1, otherwise
yintt = 0. To learn this weak interaction, we concatenate all
the features in frame t and predict the interaction probability
by ŷintt = ψ([v̈s

t ; v̈
o
t ; v̈

h
t ]), where ψ(·) denotes the relationship

indication layer in Figure 2 (c). The interaction loss is then
computed using the binary cross-entropy loss (BCE):

Lint =
1

te − ts
·
∑te

t=ts
BCE(ŷintt , yintt ), (27)



8

where ts and te represent the start and end time of the
trajectory pair, respectively.

D. Training Strategy

We adopt a four-step scheme for training. Step one: We
train the query-based Transformer decoder and prediction
heads using video frames with frame-wise object and rela-
tionship annotations via the training loss Lstep1

= Lo, as
detailed in Sec. III-B4. Step two: We train the auxiliary
object classifier using video frames with provided ground-truth
bounding boxes via the training loss Lstep2 = Lo

cls, as detailed
in Sec. III-B4. Step three: We train the open-vocabulary
relationship classifier using videos with provided ground-
truth object trajectories via the training loss Lstep3

= Lr,
as detailed in Sec. III-C3. Step four: We jointly fine-tune
the entire end-to-end framework via the overall training loss
Lstep4 = Lo + Lr.

E. Computational Complexity Analysis

The computational complexity of our framework is deter-
mined by three main stages: (1) frame-wise object detec-
tion, (2) trajectory association, and (3) spatio-temporal visual
prompting for paired object trajectories. Below, we analyze
each component in detail.
Frame-Wise Object Detection Complexity. For each frame,
objects are detected independently. Let Nv be the number of
frames in a video and Nq be the number of object queries,
which determines the maximum number of objects that the
model can query in each frame, the computational complexity
of this stage is O(Nv · Nq). Since the input resolution is
normalized to a fixed size of 336×336 by CLIP’s ViT encoder,
the complexity is independent of the original frame resolution.
Trajectory Association Complexity. After objects are de-
tected in each frame, trajectories are constructed by associating
objects across frames. Let No denote the number of objects
detected per frame, which is typically much smaller than the
number of object queries Nq . The trajectory association step
involves pairwise comparisons of detected objects between
consecutive frames, with a computational complexity of ap-
proximately O(Nv ·N2

o ).
Spatio-Temporal Visual Prompting Complexity. After tra-
jectories are constructed, spatio-temporal visual prompting
is performed on object pairs. Let Nt be the total number
of trajectories in the video, and the maximum number of
trajectory pairs is Nt×(Nt−1). The computational complexity
of this step is about O(N2

v · N2
t ), as temporal prompting

requires modeling features across different frames, resulting
in quadratic complexity with the number of frames Nv .
Overall Complexity. Combining the above stages, the total
computational complexity is O(Nv ·Nq+Nv ·N2

o +N
2
v ·N2

t ).
Scalability. While frame-wise object detection scales linearly
with Nv and Nq , trajectory association grows quadratically
with No, and spatio-temporal visual prompting scales quadrat-
ically, especially with respect to Nv and Nt. This poses
scalability challenges for longer videos and larger object sets,
which is a common challenge faced by current Open-VidVRD
methods [2], [17]. In our future work, incorporating linear

or group attention mechanisms can reduce the complexity
of temporal modeling and improve efficiency in handling
long videos. Additionally, designing a selection mechanism to
identify the most likely trajectory pairs for classification, rather
than classifying relationships pairwise for all trajectories, can
help improve the efficiency in scenarios with large object sets.

F. Discussion

In this paper, we use CLIP for the Open-VidVRD task.
Video-text pre-trained models such as InternVideo [60] and
VideoCLIP [61] can also be applied to our framework. Com-
pared with them, CLIP trained with images and texts performs
better in preserving critical details of object positions and
appearances in video frames, enabling our framework to ef-
fectively capture subtle visual information for object trajectory
detection, thereby facilitating relationship classification.

IV. EXPERIMENT

A. Datasets and Evaluation Metrics

1) Datasets: We evaluate our method on the VidVRD [1]
and VidOR [18] datasets. The VidVRD dataset contains 1000
videos, with 800 videos for training and 200 for testing,
covering 35 object categories and 132 predicate categories.
The average video length in VidVRD is 9.7 seconds. The
VidOR dataset contains 10000 videos, with 7000 videos for
training, 835 for validation, and 2165 for testing, covering
80 object categories and 50 predicate categories. The videos
in VidOR are much longer, with an average length of 34.6
seconds.

2) Evaluation Settings: For the open-vocabulary evalua-
tion, the base and novel categories are selected based on
frequency. Following RePro [2], we choose the common
object and relationship categories as base categories and the
rare ones as novel categories. Training is performed on the
base categories and testing is performed under two settings:
(1) Novel-split evaluation involves novel object categories
for trajectory detection, and all object categories along with
novel relationship categories for relationship classification.
(2) All-split evaluation involves all object categories and all
relationship categories, which is a standard evaluation. Note
that the test is performed on both the VidVRD test set and the
VidOR validation set (the annotations of the VidOR test set
are not available).

3) Evaluation Tasks: Following Motif-Net [62], we evalu-
ate the model on three standard VidVRD tasks: scene graph
detection (SGDet), scene graph classification (SGCls), and
predicate classification (PredCls). Specifically, SGDet detects
object trajectories from raw videos and classifies the relation-
ships between these objects. SGCls classifies the objects within
the provided ground-truth trajectories and then predicts the
relationships between these objects. PredCls predicts the rela-
tionships between known objects, where both the ground-truth
trajectories and corresponding object categories are provided.

4) Metrics: We use mean Average Precision (mAP) and
Recall@K (R@K) with K = 50, 100 as evaluation metrics for
relationship classification. The detected triplet is considered
correct if it matches a ground-truth triplet and the IoU between
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the trajectories is greater than a threshold (i.e., 0.5). These
metrics are applied across all tasks. For SGDet and SGCls
tasks, we introduce an additional metric, called mean Average
Precision of object trajectory (mAPo), to evaluate the quality
of object trajectories.

B. Implementation Details

For all experiments, video frames are sampled every 30
frames. We adopt the ViT-L/14 version of CLIP with fixed
parameters.

For the query-based Transformer decoder, we use six
Transformer layers and 300 object queries. The temperature
parameter τ in both Eq. 5 and Eq. 10 is set to 0.01. The
threshold ϵ used to filter the bounding boxes is set to 0.35.
For the auxiliary object classifier, we use eight tokens each
for learnable continuous prompts and learnable conditional
prompts, positioning the object token [OBJ] at the end of the
sequence. The weighting factors α and β in Eq. 11 are set to
0.3 and 0.6, respectively. The coefficient λs in Eq. 16 is set
to two. The coefficients λ1, λ2, λ3, λ4 and λ5 in Eq. 17 are
set to three, five, five, two and two, respectively. The number
of Transformer blocks for spatio-temporal visual prompting is
set to one for VidVRD and two for VidOR. For the open-
vocabulary relationship classifier, we use eight tokens each
for learnable continuous prompts and learnable conditional
prompts, positioning the relationship token [REL] at 75% of
the token length. The coefficients γ and δ in Eq. 23 are set to
0.2 and 0.1, respectively.

For all training steps in Sec. III-D, we use the AdamW [63]
algorithm for optimization. In step one, we initialize the
query-based Transformer decoder, object embedding head, and
bounding box regression head with pre-trained parameters
from MS-COCO [64] (excluding novel object categories in
Open-VidVRD), while the relationship classification head is
initialized with random parameters. The learning rate is set to
1e-5, and the model is trained for ten epochs with a batch size
of 16. In step two, the auxiliary object classifier is trained for
five epochs with a learning rate of 1e-3 and a batch size of
12. In step three, the open-vocabulary relationship classifier is
trained with an initial learning rate of 1e-4, following a multi-
step decay schedule that reduces the learning rate by a factor
of 0.1 at epochs 15, 20, and 25, with a batch size of 32. In
step four, we fine-tune the end-to-end framework for 5 epochs
with an initial learning rate of 1e-5 and a batch size of one.

C. Comparison with Existing Methods

We compare our method with existing Open-VidVRD meth-
ods, including RePro [2], VidVRD-II [23], CLIP [8], and AL-
Pro [36], and our previous work OV-MMP [17]. Existing meth-
ods rely on trajectory detectors pre-trained on closed datasets
that encompass all object categories in Open-VidVRD. To
ensure a fair comparison, we reproduce the compared existing
methods by removing the novel object categories from the
training data and retraining the trajectory detector. On the
VidOR dataset, the models and codes of ALPro, VidVRD-
II, and RePro have not been ready to use, and only the results
for R@50 and R@100 are available from their original papers.

Table I and Table II show the comparison results on the Vid-
VRD and VidOR datasets, respectively. We have several inter-
esting observations as follows: (1) Our method outperforms all
existing methods that rely on trajectory detectors pre-trained
on closed datasets across all metrics on both datasets, demon-
strating the superiority of unifying object trajectory detection
and relationship classification in an end-to-end framework for
Open-VidVRD; (2) For the novel split, our method consis-
tently achieves the best results across all datasets, especially
improving mAPo by 21.94% and mAP by 2.89% on the SGDet
task on the VidVRD dataset, and improving mAPo by 1.22%
and mAP by 1.61% on the VidOR dataset. This highlights its
strong generalization capability in open-vocabulary scenarios,
which benefits from the proposed relationship-aware open-
vocabulary trajectory detector and the proposed multi-modal
prompting based open-vocabulary relationship classifier; On
both SGCls and PredCls tasks where the ground-truth object
trajectories are provided, our method also achieves better
performance than the existing methods, which suggests that
the open-vocabulary relationship classifier benefits from joint
learning of trajectory detection and relationship classification.
(4) On the VidVRD dataset, for the novel split, our method
achieves higher mAPo on the SGDet task than on the SGCls
task. This is because the detected bounding boxes are of high
quality, and the classification results of SGDet benefit from
ensembling the classification results of both the object queries
and the auxiliary object classifier, whereas the results of SGCls
rely solely on the auxiliary object classifier. In contrast, for the
VidOR dataset, the mAPo results on the SGDet task are limited
by the trajectory association due to more blurs and occlusions
in longer videos.

D. Ablation Studies

1) Effectiveness of End-to-end Training: To evaluate the ef-
fectiveness of the end-to-end training of the trajectory detector
and relationship classifier, we design a separate training strat-
egy for comparison, where the trajectory detector is trained
using the frame-wise object and relationship annotations, and
the relationship classifier is trained using the ground-truth
trajectories and video-level relationship annotations. Table III
shows the results on the VidVRD and VidOR datasets, and the
proposed end-to-end training performs better in both trajectory
detection and relationship classification, further verifying the
advantage of unifying trajectory detection and relationship
classification.

2) Effectiveness of Relationship-aware Open-vocabulary
Trajectory Detector: We propose a relationship query and a
corresponding auxiliary relationship loss (denoted as “Rna”) to
help the trajectory detector explicitly perceive the relationships
between objects. We further use an auxiliary object classifier
(denoted as “Aoc”) to enhance the object classification of the
trajectory detector. The ablation study results of “Rna” and
“Aoc” on the VidVRD dataset are shown in Table IV. It is
interesting to observe that both the proposed relationship query
with the corresponding loss and the introduced object classifier
enhance the relationship detection performance.
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TABLE I
RESULTS OF DIFFERENT METHODS ON THE VIDVRD DATASET.

Split Method SGDet SGCls PredCls
mAPo mAP R@50 R@100 mAPo mAP R@50 R@100 mAP R@50 R@100

Novel

ALPro 10.36 0.98 2.79 4.33 21.06 3.69 7.27 8.92 4.09 9.42 10.41
CLIP 14.37 2.13 3.26 4.50 24.96 3.84 6.03 9.44 4.54 7.27 11.74

VidVRD-II 10.36 3.11 7.93 11.38 21.06 5.70 13.22 18.34 7.35 18.84 26.44
RePro 10.36 5.87 12.75 16.23 21.06 10.32 19.17 25.28 12.74 25.12 33.88

OV-MMP 14.37 12.15 13.72 15.21 24.96 17.57 21.98 28.43 21.14 30.41 37.85
Ours 36.31 15.04 16.03 18.18 31.73 17.96 30.74 36.86 21.65 35.37 43.64

All

ALPro 18.18 3.03 2.57 3.11 68.99 3.92 3.88 4.75 4.97 4.50 5.79
CLIP 34.61 4.86 2.97 3.55 70.39 5.80 4.37 5.38 6.49 5.21 6.54

VidVRD-II 18.18 12.66 9.72 12.50 68.99 17.26 14.93 19.68 19.73 18.17 24.90
RePro 18.18 21.12 12.63 15.42 68.99 30.15 19.75 25.00 34.90 25.50 32.49

OV-MMP 34.61 22.10 13.26 16.08 70.39 29.38 23.56 28.89 38.08 30.47 37.46
Ours 52.72 26.34 16.48 19.54 74.25 31.95 25.96 31.66 39.83 31.66 39.69

TABLE II
RESULTS OF DIFFERENT METHODS ON THE VIDOR DATASET. FOR ALPRO, VIDVRD-II, AND REPRO, ONLY THE RESULTS OF R@50 AND R@100 ON

THE SGCLS AND PREDCLS TASKS ARE AVAILABLE FROM THEIR ORIGINAL PAPERS.

Split Method SGDet SGCls PredCls
mAPo mAP R@50 R@100 mAPo mAP R@50 R@100 mAP R@50 R@100

Novel

ALPro - - - - - - 3.17 3.74 - 8.35 9.79
CLIP 1.11 0.17 0.68 0.77 6.04 0.43 1.79 2.36 1.08 5.48 7.20

VidVRD-II - - - - - - 1.44 2.01 - 4.32 4.89
RePro - - - - - - 2.01 2.30 - 7.20 8.35

OV-MMP 1.11 0.84 1.44 1.44 6.04 2.40 5.48 6.92 3.58 9.22 11.53
Ours 2.33 2.45 4.79 4.79 6.83 2.72 5.76 8.65 4.11 9.80 14.41

All

ALPro - - - - - - 0.95 1.32 - 2.61 3.66
CLIP 3.38 0.22 0.35 0.51 25.86 0.63 0.74 0.99 1.29 1.71 3.13

VidVRD-II - - - - - - 9.40 12.78 - 24.81 34.11
RePro - - - - - - 10.03 12.91 - 27.11 35.76

OV-MMP 3.38 7.15 6.54 8.29 25.86 24.00 23.04 30.14 38.52 33.44 43.80
Ours 12.99 11.08 8.43 9.82 26.17 25.21 23.78 30.17 39.75 33.68 43.87

TABLE III
PERFORMANCE (MAPo AND MAP) OF ABLATION STUDY FOR

END-TO-END TRAINING ON THE VIDVRD AND VIDOR DATASETS.

Dataset End-to-end
training

Novel All
mAPo mAP mAPo mAP

VidVRD 33.06 14.43 46.76 25.39
✓ 36.31 15.04 52.72 26.34

VidOR 1.00 1.99 10.14 10.45
✓ 2.33 2.45 12.99 11.08

TABLE IV
PERFORMANCE (MAPo AND MAP) OF ABLATION STUDY FOR THE

RELATIONSHIP-AWARE OPEN-VOCABULARY TRAJECTORY DETECTOR.
“RNA” DENOTES THE RELATIONSHIP QUERY AND CORRESPONDING
AUXILIARY RELATIONSHIP LOSS. “AOC” DENOTES THE AUXILIARY

OBJECT CLASSIFIER.

Rna Aoc Novel All
mAPo mAP mAPo mAP
26.17 14.23 43.09 24.57

✓ 27.33 14.56 46.16 25.36
✓ 30.29 14.58 48.11 25.47

✓ ✓ 36.31 15.04 52.72 26.34

3) Effectiveness of Multi-modal Prompting: To evaluate the
multi-modal prompting, we replace the spatio-temporal visual
prompting (denoted as “Vis”) with linear layers and replace
the vision-guided language prompting (denoted as “Lan”) with
handcraft language prompting for comparison. The results on

TABLE V
PERFORMANCE (MAP) OF ABLATION STUDY FOR MULTI-MODAL

PROMPTING ON THE VIDVRD DATASET. “VIS” AND “LAN” DENOTE
VISUAL PROMPTING AND LANGUAGE PROMPTING, RESPECTIVELY.

Vis Lan Novel All
SGDet PredCls SGDet PredCls
9.14 13.36 22.86 35.24

✓ 11.46 14.59 24.28 36.64
✓ 9.72 15.60 24.81 38.38

✓ ✓ 15.04 21.65 26.34 39.83

TABLE VI
PERFORMANCE (MAP) OF ABLATION STUDY FOR THE SPATIO-TEMPORAL

VISUAL PROMPTING ON THE VIDVRD DATASET. “SPA” AND “TEM”
DENOTE SPATIAL MODELING AND TEMPORAL MODELING, RESPECTIVELY.

Spa Tem Novel All
SGDet PredCls SGDet PredCls
9.72 15.60 24.81 38.38

✓ 12.14 17.91 25.02 37.22
✓ 11.58 16.59 23.47 34.32

✓ ✓ 15.04 21.65 26.34 39.83

the VidVRD dataset are reported in Table V, demonstrating the
effectiveness of the proposed visual promoting and language
prompting.

4) Effectiveness of Spatio-temporal Visual Prompting: To
further evaluate the spatio-temporal visual prompting, we
replace the spatial modeling module (denoted as “Spa”) or
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TABLE VII
PERFORMANCE (MAPo AND MAP) OF ABLATION STUDY FOR THE

VISION-GUIDED LANGUAGE PROMPTING ON THE VIDVRD DATASET.

Variants Novel All
mAPo mAP mAPo mAP

Manual 31.97 11.46 49.69 24.28
Continuous 35.66 12.79 51.86 25.56
Conditional 34.83 13.40 50.96 25.52

Ours 36.31 15.04 52.72 26.34

(b) All
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Fig. 3. Results of different token numbers of vision-guided language prompts
on the VidVRD dataset. Different colors denote different token numbers, i.e.,
the blue, orange, and green colors represent the 8,16, and 32 tokens. The
horizontal axis represents the percentage of tokens from conditional prompts,
i.e., from 0 (all tokens are from learnable continuous prompts) to 100% (all
tokens are from learnable conditional prompts). (a) and (b) show the results
of using different tokens on the mAPo metric in the auxiliary object classifier.
(c) and (d) show the results of using different tokens on the mAP metric in
the open-vocabulary relationship classifier.

the temporal modeling module (denoted as “Tem”) with linear
layers. According to the results presented in Table VI, our
method achieves a 2.9% improvement in mAP on the novel
split for the SGDet task when performing both spatial and tem-
poral modeling. Furthermore, we observe that the performance
drops significantly when only temporal modeling is performed
without incorporating spatial modeling. This is in line with
expectations, as it is difficult to recognize object relationships
based only on the dynamic state changes of individual objects.

5) Effectiveness of Vision-guided Language Prompting:
To further evaluate the vision-guided language prompting,
we design three variants of our method for comparison: (1)
“Manual” involves pre-defined templates for the auxiliary
object classifier (i.e., “An image of a [OBJ]”) and the rela-
tionship classifier (i.e., “An image of a person or object [REL]
something” for subjects, “An image of something [REL] a
person or object” for objects, and “An image of the visual
relationship [REL] between two objects” for background);
(2) “Continuous” involves learnable continuous prompts; (3)
“Conditional” tailors all prompts to input visual features. The
results in Table VII demonstrate that integrating the proposed
vision-guided language prompting (“Ours”) into the auxiliary
object classifier and the relationship classifier significantly en-
hances the performances of object trajectory classification and
relationship classification. Notably, there is an improvement

TABLE VIII
PARAMETER ANALYSIS RESULTS (MAPo AND MAP) OF ϵ ON THE

VIDVRD DATASET.

ϵ
Novel All

mAPo mAP mAPo mAP
0.20 33.57 14.18 51.93 25.91
0.25 34.81 14.93 52.40 26.19
0.30 35.15 14.89 52.69 26.30
0.35 36.31 15.04 52.72 26.34
0.40 34.86 14.61 50.27 25.98
0.45 32.24 12.95 45.90 20.89
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Fig. 4. Results of different values of the hyperparameters α and β on the
VidVRD dataset. The horizontal axis represents the values of the parameter,
and the vertical axis represents the mAPo performance. (a) shows the results
of different values of α while keeping β = 0.5. (b) shows the results of
different values of β while keeping β = 0.3.

of over 1.6% in mAP in the novel split when using detected
trajectories.

E. Hyperparameters

1) The Token Number of Vision-guided Language Prompts:
To analyze the effects of different token numbers of vision-
guided language prompts on performance, we conduct exper-
iments using 8, 16, and 32 tokens for comparison. We also
set the percentage of tokens from the learnable conditional
prompts to 0, 25%, 50%, 75%, and 100% for comparison.
Figure 3 shows the results of mAPo and mAP on the VidVRD
dataset. We observe that as the number of tokens increases, the
performance first increases and then decreases, with the best
performance when the number of tokens is 16. We also observe
that as the percentage of tokens from learnable conditional
prompts increases, the results first increase and then become
unstable, and the result is best when half of the tokens come
from learnable conditional prompts. These observations high-
light the importance of combining task-specific knowledge and
visual cues, further validating the effectiveness of the proposed
vision-guided prompting in combining learnable continuous
prompts and learnable conditional prompts.

2) The Filtering Threshold of Bounding Boxes : To analyze
the effect of the filtering threshold of bounding boxes in
frame-wise open-vocabulary object detection, i.e., the hyper-
parameter ϵ, we conduct experiments by varying the value
of ϵ in {0.20, 0.25, 0.30, 0.35, 0.40, 0.45}. The results on the
VidVRD dataset are shown in Table VIII. From these results,
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Fig. 5. Results of different values of loss function coefficients on the VidVRD dataset. The horizontal axis represents the values of the coefficients. The left
and right vertical axes represent the results of the novel and all categories. (a) shows the results of different values of λs while keeping λ4 = 1 and λ5 = 1.
(b) shows the results of different values of λ4 while keeping λs = 2 and λ5 = 1. (c) shows the results of different values of λ5 while keeping λ4 = 2 and
λ5 = 2. (d) shows the results of different values of γ while keeping δ = 0. (e) shows the results of different values of δ while keeping γ = 0.2.

we observe that the performance initially improves as the
threshold increases, but then decreases. This is because as
ϵ increases, the exclusion of more false positive bounding
boxes enhances performance. However, beyond a certain point,
further increases in ϵ begin to eliminate true positive boxes,
leading to a degradation in performance. The optimal value of
ϵ is 0.35.

3) The Coefficients for Ensembling Object Classifica-
tion Results: To analyze the effect of the coefficients
for ensembling object classification results in frame-
wise open-vocabulary object classficiation, i.e., the hy-
perparameters α and β in Eq. 11, we conduct exper-
iments by varying the value of α in the range of
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} while keep-
ing β = 0.5, and the results on the VidVRD dataset are shown
in Figure 4 (a). We observe that the optimal performance is
achieved when α is set to 0.3. Then we vary the value of
β in the same range while keeping α = 0.3, and the results
are shown in Figure 4 (b). The overall performance reaches
its peak value when β is set to 0.6. It is worth noting that
the ensemble is more effective for the novel categories, which
can be seen from the significant impact of β on the mAPo

results, highlighting the positive impact of the rich semantic
information in CLIP on these categories.

4) The Coefficients of Loss Functions: According to
DETR [56], the coefficients λ1, λ2, and λ3 in Eq. 17 are set to
three, five, and five, respectively. To analyze the impact of the
other coefficients for loss functions of the relationship-aware
open-vocabulary trajectory detector, i.e., λs in Eq. 16, and
λ4 and λ5 in Eq. 17, we independently train the trajectory
detector and vary λs in {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, while
keeping λ4 = 1 and λ5 = 1. The results on the VidVRD
dataset are shown in Figure 5 (a), indicating that the optimal
performance is achieved when λs is set to two. Then we vary
λ4 in {1, 2, 3, 4, 5} with λs = 2 and λ5 = 1, and the results are
shown in Figure 5 (b), which indicates that the performance
peaks when λ4 is set to two. Subsequently, we vary λ5 over
{1, 2, 3, 4, 5} with λs = 2 and λ4 = 2. The results in Figure 5
(c) show that the performance is maximized when λ5 is two.

Similarly, to analyze the effect of coefficients for loss
functions of the open-vocabulary relationship classifier, i.e.,
the hyperparameters γ and δ in Eq. 23, we indepen-
dently train the relationship classifier and vary γ over
{0.1, 0.2, 0.3, 0.4, 0.5, 1.0}, while keeping δ = 0. The results
on the VidVRD dataset are shown in Figure 5 (d), which
indicates that optimal performance is achieved when γ is set
to 0.2. Then we vary the value of δ in the same range while
keeping γ = 0.2, the results are shown in Figure 5 (e). The
best performance occurs when δ is set to 0.1.

F. Qualitative Analysis

1) Trajectory Visualization: We visualize the trajectories
generated by different methods on the VidVRD dataset. Fig-
ure 6 (a) shows a cat observing a lizard. RePro [2] and OV-
MMP [17] fail to detect the lizard, which belongs to a novel
object category. Moreover, OV-MMP detects an incomplete
trajectory of the cat and misidentifies an object out of interest,
resulting in subsequent classification errors. In contrast, our
method detects both objects accurately and classifies them cor-
rectly. Figures 6 (b) and (c) also show that both RePro and OV-
MMP fail to detect certain objects, while our method detects
all objects correctly without redundancy or omission. These
examples demonstrate the strong generalization capability of
our method to novel object categories and complex scenes.
Figure 6 (d) illustrates a case of severe occlusion, where
none of the methods are able to fully detect the trajectory
of the panda inside the barrel, suggesting the limitations of
our method in such challenging scenarios. In the future, more
advanced trajectory association algorithms could help improve
trajectory detection performance by better handling occlusions
and capturing motion dynamics over time.

2) Feature Distribution Visualization: We visualize the fea-
ture distributions of randomly selected 10 predicate categories
by projecting the features of the union regions onto a 2D
plane using T-SNE [65], to demonstrate how well our spatio-
temporal visual prompting method adapts the image encoder of
CLIP. As shown in Figure 7, features of our method (the right
parts of Figure 7 (a), (b)) within the same categories are pulled
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Fig. 6. Visualization of trajectories from different methods. The objects classified incorrectly are enclosed within the red dashed box. * represents the novel
object category.

(a) Feature distributions of base categories.

fly with jump beneath follow sit above play
ride left touch stop behind walk with

(b) Feature distributions of novel categories.

fly away sit next to drive walk past stand above
swim behind above creep toward move past stop next to

CLIP Ours

OursCLIP

Fig. 7. Qualitative results of visual feature (union region of subject and object)
distributions by T-SNE.

closer while features across different categories are pushed
further apart, improving the discrimination on both base and
novel categories. These qualitative results further verify the
effectiveness of our spatio-temporal visual prompting method.

3) Relationship Visualization: We visualize the correctly
detected relationships using ground-truth trajectories on the
VidVRD dataset. The comparison includes results from the
original CLIP model, our method without language prompt-

ing (“w/o language prompting”), our method without visual
prompting (“w/o language prompting”), and our method. Fig-
ure 8 (a), (b) and (c) show that CLIP performs poorly in
relationship classification. Introducing language prompting or
visual prompting can detect more correct relationships. Our
method achieves the best performance, especially for the novel
categories. However, Figure 8 (d) shows a scene with severe
occlusion and blur, where our method only identifies one
correct relationship. This suggests that there is still room
for improvement, particularly in challenging scenarios with
significant occlusion or ambiguity. Future advancements in
multi-view fusion or more robust temporal modeling could
enhance relationship classification accuracy.

4) Case Studies: We conduct case studies on the VidVRD
dataset to highlight the strengths of our end-to-end method and
show the scenarios that lead to detection failures. As shown
in Figure 9 (a) and (b), our method effectively detects object
trajectories and accurately classifies the relationships between
objects, including both base and novel categories, successfully
overcoming challenges such as detecting partially visible ob-
jects and handling complex dynamic relationships like “move
past”. Figure 9 (c) shows an example of video relationship
detection in a backlit scene. Due to the strong sunlight, objects
in the video appear as black silhouettes, losing visual texture
information. Despite these challenging conditions, our method
still successfully detects object trajectories, accurately classi-
fies object categories, and correctly predicts most relationship
categories, demonstrating its robustness to various scenes.
However, due to the lack of texture information, it is difficult
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Fig. 8. Visualization of relationship classification results using ground truth trajectories. The relationships classified incorrectly are enclosed within the red
dashed box. * represents the novel relationship category.

to determine the front-to-back positions of objects, resulting in
some errors in relationship classification. Figure 9 (d) shows a
challenging scene where the bodies of two antelopes are facing
away from the camera, making object classification difficult.
Our method incorrectly classifies the larger antelope on the
left into a lion and the striped antelope on the right into a
zebra. These misclassifications of objects lead to subsequent
errors in triplet detection, despite the correct classification of
the relationship categories.

G. Cross-dataset Evaluation

To evaluate the effectiveness of our method in detecting
video relationships in real-world scenes, which exhibit a
significant domain gap from the training set, we conduct a
cross-dataset evaluation by training on the base categories
of the VidOR dataset and testing directly on the VidVRD
dataset, where categories that overlap with the training data
are excluded. In terms of categories, only 18 object categories
in the VidVRD dataset appear in the novel categories of the
VidOR dataset, while 17 object categories do not appear.
Similarly, only 14 relationship categories in VidVRD appear
in the novel categories of VidOR, while 118 relationship
categories do not overlap. Additionally, the average video
length differs significantly, with VidVRD videos averaging
9.7 seconds and VidOR videos averaging 34.6 seconds. These
significant discrepancies highlight the challenge of generaliz-
ing models to unseen object categories, unseen relationship
categories, and unfamiliar video scenes, providing a rigorous
evaluation of our method’s performance in real-world video
relationship detection scenarios.

TABLE IX
COMPARISON OF CROSS-DATASET TRANSFERRED MODELS AND UPPER

BOUND MODELS ON THE SGDET TASK OF THE VIDVRD DATASET.

Setting Method mAPo mAP

Cross dataset

ALPro 3.88 0.29
VidVRD-II 3.88 0.88

RePro 3.88 1.11
OV-MMP 2.74 1.14

Ours 13.65 6.59

Upper bound

ALPro 10.36 0.98
VidVRD-II 10.36 3.11

RePro 10.36 5.87
OV-MMP 14.37 12.15

Ours 36.31 15.04

We present mAPo and mAP for object and relationship
categories not seen in the training data as the results of cross-
dataset experiments, using the results from the novel split
without cross-dataset training as the upper bound, as shown
in Table IX. It can be observed that our method achieves the
best results on all metrics in cross-dataset experiments, even
surpassing the upper bound results of ALPro, VidVRD-II, and
RePro, demonstrating the strong generalization capability of
our end-to-end framework.

V. CONCLUSION

We present an end-to-end Open-VidVRD framework that
unifies trajectory detection and relationship classification,
eliminating the dependency on trajectory detectors pre-trained
on closed datasets in the previous methods. Under this frame-
work, we propose a relationship-aware open-vocabulary tra-
jectory detector that can capture the relationship contexts via
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Fig. 9. Examples of detected relationships by our method. The objects or relationship triplets detected incorrectly are enclosed within the red dashed box. *
represents the novel relationship category.

a relationship query and a corresponding auxiliary relation-
ship loss to improve the trajectory detection performance.
Moreover, we propose an open-vocabulary relationship clas-
sifier with a multi-modal prompting method that can prompt
CLIP on both the visual and language sides to enhance the
generalization to novel categories. Experiments on VidVRD
and VidOR datasets demonstrate significant improvements in
the overall performance and generalization capability. In the
future, we plan to unify trajectory detection and relationship
classification within a Transformer decoder to further improve
their mutual performance and make our method more practical
for processing real-world videos, especially long videos with
more complex object relationships.
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