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Abstract—Language-driven action localization aims to search
a video segment in an untrimmed video, which is semantically
relevant to an input language query. This task is challenging since
language queries describe diverse actions with different motion
characteristics and semantic granularities. Some actions, such as
“the person takes off their shoes, and goes to the door”, are charac-
terized by complex motion relationships, while others, such as “a
person is standing holding a mirror in one hand”, are distinguished
by salient body postures. In this paper, we propose a dynamic
pathway between an exploitation module and an exploration
module for query-aware feature learning to handle the diversity
of actions. The exploitation module works in a coarse-to-fine
manner, first learns the feature of general motion relationships
to search the coarse segment of the target action and then learns
the feature of subtle motion changes to predict the refined action
boundaries. The exploration module functions in a point-to-area
diffusion fashion, first learns the feature of sub-action pattern
to search the salient postures of the target action and then
learns the feature of temporal dependency to expand the posture
frames to the action segment. The exploitation module and the
exploration module are dynamically and adaptively selected to
learn comprehensive representations of diverse actions to improve
the action localization accuracy. Extensive experiments on the
Charades-STA and TACoS datasets demonstrate that our method
performs better than existing methods.

Index Terms—Dynamic pathway, exploitation, exploration,
language-driven action localization, video grounding, video mo-
ment retrieval.

I. INTRODUCTION

With the explosive growth in the number of videos on the
internet, searching content-of-interest videos draws growing
attention from both industry and academia. In this paper, we
focus on the task of language-driven action localization, also
known as video moment retrieval or video grounding, which
aims to search a video segment in an untrimmed video that is
semantically relevant to an input language query. It is an im-
portant task in video understanding and has wide applications
in robotic navigation and human-computer interaction.

To address this task, numerous methods focus on cross-
modality alignment between videos and language queries to
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Language Query:  a person is standing holding a mirror in one hand

Language Query: the person takes off their shoes, and goes to the door 

(a) action with complex motion relationship

(b) action with salient body posture

Action segment:

Action segment:

Fig. 1. Examples of different kinds of actions described by language queries.
(a) describes an action with complex motion relationship. (b) describes an
action with salient body posture.

bridge the huge cross-modal gap between visual and textual
features, such as co-attention [1], cross-modal graph atten-
tion [2], context-query attention [3], and cross-attention [4].
These methods have achieved promising results in recent
years. However, they use a static network to deal with different
kinds of actions, while neglecting various motion charac-
teristics and semantic granularities of actions described by
language queries.

Different from the action-related close-set tasks, such as
action recognition or action localization, with pre-defined
action categories, the language-driven action localization task
describes diverse actions that demonstrate various motion
relationships and salient body postures at different semantic
granularities. For example, as shown in Figure 1(a), the action
“the person takes off their shoes, and goes to the door”
involves several sequential motions (sub-actions) “take off
shoes”, and “go to the door”, and its feature need to be
learned to capture temporal contextual relationships between
motions. On the other hand, as shown in Figure 1(b), the
action “a person is standing holding a mirror in one hand”
can be easily located by the salient posture “a standing
person is holding a mirror”, whose feature need to be learned
to distinguish different postures. Therefore, it is extremely
challenging to learn adaptive query-aware features to represent
different kinds of actions in the task of language-driven action
localization.

To address this challenge, we propose a dynamic pathway
between an exploitation module and an exploration module for
query-aware feature learning, which can adaptively select an
appropriate feature learning pathway according to a specific
language query. The exploitation module works in a coarse-
to-fine manner to handle the actions with coarse semantic
granularity and complex motion changes. It first learns the
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feature of general motion relationships to search the coarse
segment of the target action and then learns that of subtle mo-
tion changes to predict the refined action boundaries. Starting
with the features of general motion relationships, most video
segments irrelevant to the input query are then excluded, thus
making the localization of refined action boundaries easier and
more precise. The exploration module functions in a point-to-
area diffusion fashion to handle the actions with fine semantic
granularity and salient body postures. It first learns the feature
of the sub-action pattern to search the salient postures of the
target action and then learns that of temporal dependency to
expand the posture frames to the action segment. Starting with
the feature of the sub-action pattern, salient postures are then
be detected more easily, which gives a strong indicator for
the action segment and can be used as anchors for expanding
to the action segment boundaries. The exploitation module
and exploration module work in a mutually complementary
manner. By adding a query-aware adaptive module between
them, an input can be adaptively processed, thus contributing
to a flexible, accurate search of the target action segments.
Furthermore, we design a query-aware selection module to
dynamically and flexibly select the exploitation module or
the exploration module to adaptively learn the action feature
according to the input language query, thereby improving the
accuracy and interpretability of searching for the target action.

Specifically, the exploitation module consists of a multi-
scale long short-term memory (LSTM) block and a self-
attention block in parallel, followed by a multi-scale temporal
convolution block. The exploration module consists of a multi-
scale temporal convolution block, followed by a multi-scale
LSTM block and a self-attention block in parallel. The archi-
tecture of the blocks in the exploitation module is the same
as that of the exploration module, but for different purposes.
Note that our LSTM block and temporal convolution block
are both implemented in multiple temporal scales to deal with
the various duration of the same action in different videos and
the different granularities of motion relationships. The query-
aware module predicts a two-dimensional one-hot vector based
on the language representation, which is a weighted sum of
features of all the input language tokens. Extensive experi-
ments on the Charades-STA and TACoS datasets demonstrate
that our method outperforms the existing methods.

Our main contributions are summarized as follows:

• We propose a dynamic pathway between multiple mod-
ules to handle diverse actions with different motion
characteristics and semantic granularities described by
language queries. To the best of our knowledge, this is the
first attempt at leveraging a dynamic network structure for
different actions in language-driven action localization.

• We design an exploitation module to deal with actions
with coarse semantic granularities and complex motion
changes of multiple sub-actions, which localizes the
target action in a coarse-to-fine manner.

• We design an exploration module to deal with actions
with fine semantic granularities and salient body postures,
which localizes the target segment in a point-to-area
diffusion fashion.

II. RELATED WORK

The language-driven action localization task was first pro-
posed in [5], [6] and further studied by researchers using
mainly two lines of methods: proposal-based [2], [5]–[17] and
proposal-free [18]–[22].

A. Proposal-based Methods

The proposal-based methods first generate proposals using
temporal bounding boxes (e.g., sliding windows [5] and a 2D
temporal adjacency map [11]), then calculate the similarities
between the proposals and the given language query, and fi-
nally rank all the proposals by the similarities. MCN [6] learns
a joint space of queries and proposals for better similarity
measurement between visual and language representations.
MHST [23] generates proposals in a tree structure, which
merges the adjacent frames sharing the same visual-linguistic
semantics into the parent node. To enhance the proposal fea-
ture, 2D-TAN [11] learns temporal relations between adjacent
video moments using a 2D temporal proposal map, MSAT [24]
introduces a multi-stage aggregated transformer that uses a
BERT-variant transformer backbone to extract visual-language
features, SCDM [10] modulates the temporal convolutional
visual features to correlate and compose language-related
video contents using a semantic conditioned dynamic mod-
ulation algorithm, and SLP [25] adopts a two-step human-like
framework to take both frame-differentiable and boundary-
precise requirements into account.

B. Proposal-free Methods

The proposal-based methods are time-consuming and often
easily introduce redundant candidates. Consequently, more
efficient proposal-free methods are proposed as alternatives,
which directly predict the temporal location of target action
by fusing the visual and linguistic features. ExCL [26] and
SeqPAN [27] model the cross-modal interaction between the
language and video to predict the start and end time of the
target action. VSLNet [3] searches the target action within a
highlighted region in a span-based question-answering frame-
work. To take advantage of the structural information of
videos and queries, several other methods have been pro-
posed. LGI [28] uses a sequential query attention module
to extract the implicit semantic information from local to
global. CPNet [29] proposes a pyramid network to extract
2D contextual correlation maps at different temporal scales,
which progressively replenishes the temporal contexts and
refines the location of the target action by enlarging the
temporal receptive fields. MGPN [30] perceives intra-modality
and inter-modality information at a multi-granularity level,
leveraging fine-grained intra-modality clues to explore deeper
inter-modality information.

Both the proposal-based methods and the proposal-free
methods perform inference in a static manner, that is to say,
the computational graph is fixed once trained and is thus
unable to represent various motion characteristics and semantic
granularities of actions, limiting their representation capabil-
ities. In this paper, we attempt to handle different actions

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3368919

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 15,2024 at 13:41:25 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MULTIMEDIA 3

FC

𝑷௣௔௧௛

A person is 
standing holding a 
mirror

LSTMFC GloVe

Video Encoding

Language
Encoding

PredictionCross-modal
Fusion

Local Motion 
Learning

Global Motion 
Learning 

Exploitation
Local Motion 

Learning
Global Motion 

Learning 

PredictionCross-modal
Fusion

Temporal 
Expansion

Salient Posture 
Learning 

Exploration

Temporal 
Expansion

Salient Posture 
Learning 

CNN

Adaptive Selection

𝑷௣௔௧௛

Fig. 2. Overview of the proposed dynamic pathway between an exploitation module and an exploration module. Ppath decides which path, the exploitation
module or the exploration module, is selected to learn video features according to the sentence-level feature of language queries.

by proposing a dynamic pathway where multiple modules
are flexibly and dynamically selected to learn adaptive action
features based on the semantics of language queries. This is the
first attempt at designing a dynamic architecture for language-
driven action localization and making a precise estimation of
action boundaries.

III. OUR METHOD

Language-driven action localization aims to search a target
action segment (τs, τe) corresponding to the language query
S = {wi}

Nq

i=1 from an untrimmed video V = {vt}Nv
t=1, where

τs and τe represent the start frame and end frame of the action
segment, respectively, wi represents the i-th word in the query,
vt represents the t-th video frame, and Nv and Nq represent
the numbers of video frames and text words, respectively.

Our method consists of five modules: a feature encoding
module, an exploitation module, an exploration module, a
query-aware adaptive selection module, and a prediction mod-
ule. The feature encoding module encodes the input language
query and video. The exploitation module first learns the
feature of general motion relationships to search the coarse
segment of the target action, and then learns that of subtle
motion changes to predict the refined action boundaries.
The exploration module first learns the feature of the sub-
action pattern to search the salient postures of the target
action and then learns that of temporal dependency to expand
the posture frames to the action segment. The query-aware
adaptive selection module dynamically and flexibly selects
the exploitation module or the exploration module to learn
the action feature adaptively according to the input language
query. The prediction module predicts the probabilities for
each frame being the boundary of the target action segment.
Figure 2 shows the overview of our method.

A. Feature Encoding Module

1) Language Encoding: Given an input language query S,
its word features Q = [w1,w2, · · · ,wNq

]> ∈ RNq×dw are first
initialized using the GloVe embedding [31], where wi denotes
the i-th word feature with dimension dw, and Nq denotes the
number of words in S. Then a three-layer bi-directional LSTM
is used to learn the relationships of words, followed by a feed-
forward network (FFN). Finally, the token weights α ∈ RNq of

words are learned through two fully connected (FC) layers, and
a sentence-level query feature is calculated by a weighted sum
of all the words. The overall language encoding is formulated
by

Fq = FFN1(LSTM(Q))
α = softmax(FC2(δ(FC1(Fq))))
Fs = α> · Fq

(1)

where Fq = [fq,1, fq,2, · · · , fq,Nq
]> ∈ RNq×d are the encoded

linguistic query features with dimension d; Fs ∈ Rd is the
sentence-level query feature; FFN1(·) is the feed-forward
network that consists of a linear layer and a ReLU layer;
FC1(·) and FC2(·) are fully connected layers, and their output
dimensions are d

2 and 1, respectively, and the δ is ReLU
activation layer.

2) Video Encoding: Each input video V is divided into a
sequence of non-overlap clips with a fixed length (e.g., 16
frames). Then the visual feature of each clip is extracted using
a pre-trained 3D-CNN [32], [33]. Finally, the clip features are
fed into a feed-forward network to have the same dimension as
the query features. The overall video encoding is formulated
by

Fv = FFN2(3D-CNN(V )) (2)

where Fv = [fv,1, fv,2, · · · , fv,T ]> ∈ RT×d are the encoded
video features with dimension d and T is the number of video
clips; FFN2(·) is the feed-forward network that consists of a
linear layer and a ReLU layer.

B. Exploitation Module

Some language queries describe actions with various motion
relationships, such as “the person takes off their shoes, and
goes to the door” and “the woman mixed all ingredients, put
it in a pan and put it in the oven”. Features of these actions
should be learned to capture temporal contextual relationships
between motions. To that end, we design an exploitation
module, which consists of a global motion learning neural
network and a local motion learning neural network. The
global motion learning network learns general motion rela-
tionships to roughly localize the target action area, and the
local motion learning network learns subtle motion changes
to refinely estimate the action boundaries.
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Fig. 3. An example of multi-scale LSTM with two temporal scales.

1) Global Motion Learning Network: The global motion
learning network consists of a multi-scale LSTM block and
a multi-head self-attention block, which stack in parallel. The
LSTM block exploits the sequential nature of videos to learn
temporal motion relationships between consecutive frames in
a global manner. Since the same action may last for different
durations in different videos due to the diversity of subjects
and motion styles, we implement the LSTM block in a multi-
scale version, denoted by MS-LSTM , as shown in Figure 3.

Given input video features Fv , the multi-scale LSTM is
formulated by

MS-LSTM(Fv) = FFN3([L1(Fvin);L2(Fvin); · · · ;LS(Fvin)])
(3)

where [·] is a concatenation operation; FFN3(·) is a feed-
forward network; Fvin are subset video features uniform
sampled from Fv; Ls(Fvin) represents the s-th scale LSTM,
s ∈ {1, 2, · · · , S}, formulated by

Ls(Fvin) =


LSTMs(fv,0, fv,k, fv,2k, fv,3k, · · · )
LSTMs(fv,1, fv,k+1, fv,2k+1, fv,3k+1, · · · )
· · ·
LSTMs(fv,k−1, fv,2k−1, fv,3k−1, fv,4k−1, · · · )

(4)
Specifically, for the s-th scale LSTM, the video features Fv ∈
RT×d are split into s subsets, and the parameters of LSTMs

are shared for these subsets. And for the i-th subset, starting
from frame i-1, features are sampled every s step from the
input T video features.

To simultaneously model the non-local motion relationships,
We also conduct a multi-head self-attention block to capture
the long-distance dependencies between video features. For
the input video features Fv , the multi-head self-attention is
first used, denoted by MSA(Q,K,V) = [h1, h2, · · · , hn],
where each single head is calculated as hi = SAi(Q,K,V) =
softmax(QK>/

√
d)V. Then a residual connection, a layer

normalization (LN), and a feed-forward network are used. So
the overall multi-head self-attention is formulated by

MSAB(Fv) = FFN4(LN(Hv) + Fv)),
Hv =MSA(FCQ(Fv), FCK(Fv), FCV (Fv))

(5)

where FCj(·) denotes fully connected layer, j ∈ {Q,K, V }.
Finally, the video features Fg

v = [fgv,1, f
g
v,2, · · · , f

g
v,T ]
> ∈

RT×d learned through the global motion learning network are
given by

Fg
v =MS-LSTM(Fv) +MSAB(Fv). (6)

2) Local Motion Learning Network: The local motion
learning network consists of a multi-scale temporal convolu-
tional block to learn subtle local motion changes at multiple
temporal scales to further identify the action boundaries.
Given input video features Fg

v , K temporal convolution layers
Gk(·)Kk=1 with different kernels are applied first and followed
by ReLU activation layers, and then the outputs are con-
catenated and fed into a feed-forward network to maintain
the feature dimension as d. The overall local motion learning
network is summarized as

Fc
v = FFN5([δ(G1(Fg

v)), δ(G2(Fg
v)), · · · , δ(GK(Fg

v))]),
(7)

where Fc
v = [fcv,1, f

c
v,2, · · · , f

c
v,T ]
> ∈ RT×d represent the video

features learned through the local motion learning network;
[·] is concatenation; FFN5(·) is a feed-forward network that
projects the concatenated feature from dimension Kd to d,
and the δ is ReLU activation layer.

3) Cross-modal Fusion Network: We design a cross-modal
fusion network to integrate the language query features into the
video features via context-query attention [3], [34]. Given the
video features Fc

v and the language query features Fq , their
similarities Sim = SIM(Fc

v,Fq) ∈ RT×Nq are computed
first, followed by a row-wise and a column-wise softmax
normalization to obtain two similarity matrices Sr and Sc.
And then two attention weights are derived by AV Q = Sr ·Fq

and AQV = Sr · S>c · Fc
v . The fused visual-linguistic features

Fvq are computed by

Fe1
vq = FFN6([Fc

v;AV Q;Fc
v �AV Q;Fc

v �AQV ]) (8)

where Fe1
vq = [fe1vq,1, f

e1
vq,2, · · · , f

e1
vq,T ]

> ∈ RT×d. � denotes
element-wise multiplication; [·] is concatenation; FFN6(·) is
feed-forward network that projects the concatenated feature
from dimension 4d to d.

After the cross-modal fusion network, an additional global
motion learning network and an additional local motion learn-
ing network are applied to learn features for the specific
actions corresponding to the language query:

Fe1 = GoL(LoL(Fe1
vq)) (9)

where Fe1 ∈ RT×d is the output of the exploitation module;
GoL(·) denotes the global motion learning network in Eq. (6)
and LoL(·) denotes the local motion learning network in
Eq. (7).

C. Exploration Module

Some language queries describe actions with salient pos-
tures, such as “a person is standing holding a mirror in one
hand” and “a person is sitting on the floor smiling”. Features
of these actions should be learned to distinguish different
postures. With this in mind, we design an exploration module,
which consists of a salient posture learning network and
a temporal expansion network. The salient posture learning
network searches several key postures of the target action, and
the temporal expansion network expands the posture frames
to the target action boundaries.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3368919

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 15,2024 at 13:41:25 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MULTIMEDIA 5

1) Salient Posture Learning Network: Different body pos-
tures have distinctive patterns, which can be learned by
convolution layers. To handle the multiple-scale patterns, the
salient posture learning network is implemented by a multi-
scale temporal convolution, which has the same architecture as
the local motion learning network described in Section III-B2.
Specifically, given input video features Fv , the salient posture
features are learned by

Fp
v = FFN7([δ(G1(Fv)), δ(G2(Fv)), · · · , δ(GK(Fv))])

(10)
where Fp

v represents the learned salient posture features;
FFN7(·) is a feed-forward network; Gj denotes temporal
convolution, j ∈ {1, 2, · · · ,K}; [·] is concatenation, and the
δ is ReLU activation layer.

2) Temporal Expansion Network: The temporal expansion
network expands the salient posture frames to action segment
boundaries by learning the temporal dependency and consists
of a multi-scale LSTM block and a multi-scale self-attention
block. The architectures of these two blocks are the same as
the global motion network described in Section III-B1. The
video features Ftd

v learned through the temporal expansion
network are given by

Ftd
v =MS-LSTM(Fp

v) +MSAB(Fp
v) (11)

where MS-LSTM(·) is same as that in Eq. (3) and
MSAB(·) is same as that in Eq. (5), but with different
parameters.

3) Cross-modal Fusion Network: Given the video features
Ftd
v and the language query features Fq , We integrate them

by using the same context-query attention in Section III-B3 to
obtain the fused visual-linguistic features Fe2

vq .
Then an additional salient posture learning network and an

additional temporal expansion network are applied to learn
features for the specific actions related to the language query:

Fe2 = TeN(SpL(Fe2
vq)) (12)

where Fe2 ∈ RT×d is the output of the exploration mod-
ule; TeN(·) denotes the temporal expansion network in
Eq. (11); SpL(·) denotes the salient posture learning network
in Eq. (10).

D. Query-aware Adaptive Selection Module

The exploitation and exploration modules handle various
target actions with different motion characteristics and seman-
tic granularities described by the language queries. Given a
specific language query, how to dynamically and flexibly select
the appropriate pathway between the two modules becomes a
major problem. To address this problem, we propose a query-
aware adaptive selection module for the selection between the
exploitation and exploration modules according to the input
language query. Specifically, the probabilities for different
pathways are estimated based on the sentence-level query
feature Fs using a fully connected layer, followed by a
Gumbel-softmax normalization:

Ppath = Gumbel-softmax(FC3(Fs)), (13)

where FC3(·) is a fully connected layer with the output
dimension 2; Ppath ∈ R2 is a two-dimension one-hot vector
and denotes the probabilities of selecting the exploitation and
exploration modules. Gumbel-softmax normalization is em-
ployed to make Ppath a differentiable discrete sampling based
on the probability. The Gumbel softmax trick is a technique
that allows sampling from categorical distribution during the
forward pass of a neural network. It is essentially done by
combining the reparameterization trick and smooth relaxation.
Given the Gumbel noise g ∼ Gumbel(0, 1) and input x, the
soft categorical sample can be computed by Gumbel-softmax
operation: y = Softmax((log(x)+ g)/τ), where τ is an an-
nealing temperature. When τ → 0+, the output y is equivalent
to the Gumbel-Max form: ŷ = Onehot(argmax(log(x)+x)).
When the input x is unnormalized, the log(·) operator shall
be omitted [35].

Given Ppath, the output feature Fe is given by

Fe =

{
Fe1, if Ppath = [1, 0]>

Fe2, if Ppath = [0, 1]>
(14)

E. Prediction Module
We learn a probability distribution over all the video frames

to represent the probabilities of the start and end boundaries
of the target action segment. The distribution probabilities of
the start boundary, denoted by Pb

s ∈ RT , and that of the end
boundary, denoted by Pb

e ∈ RT , are predicted by a two-branch
network consisting of two fully connected layers:

Pb
s = softmax(FC5(δ(FC4(Fe))))

Pb
e = softmax(FC7(δ(FC6(Fe))))

(15)

where the output feature dimensions of FCi(·), i ∈ {4, 6} and
FCj(·), j ∈ {5, 7} are d

2 and 1, respectively, and the δ is
ReLU activation layer.

To further improve the performance, we also apply an-
other branch of two fully connected layers network to pre-
dict an inner probability for each frame as an auxiliary
task only for training, following [34], [36]. Let Pin =
[pin

1 ,pin
2 , · · · ,pin

T ]> ∈ RT denote the probability of being the
target action frames, calculated by

Pin = sigmoid(FC9(δ(FC8(Fvm)))) (16)

where the output feature dimensions of FC8(·) and FC9(·)
are d

2 and 1, respectively, and the δ is ReLU activation layer.
During testing, the predicted start and end boundaries of

the target action segment are derived by maximizing the joint
probability:

(τ̂s, τ̂e) = argmaxts,te Pb
s(ts)× Pb

e(te)

pbse = Pb
s(τ̂s)× Pb

e(τ̂e)
(17)

where pbse is the optimized probability score of the predicted
boundaries (τ̂s, τ̂e).

F. Training Objective
Given the probability distributions of action boundaries, Pb

s

and Pb
e, the training objective for action boundary prediction

is formulated by

Lbound = fXE(Pb
s, τs) + fXE(Pb

e, τe) (18)
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE

CHARADES-STA DATASET.

Methods R@1; IoU ≥ µ
mIoU0.3 0.5 0.7

VSLNet [3] 70.46 54.19 35.22 50.02
LGI [28] 72.96 59.46 35.48 51.38
DeNet [49] - 59.7 38.52 -
SS [50] - 60.75 36.19 -
I2N [4] - 56.61 34.14 -
CPNet [29] 71.94 60.27 38.74 52.00
ACRM [51] 73.47 57.53 38.33 -
ICG [52] 67.63 50.24 32.88 48.02
CPN [53] 68.48 51.07 31.54 48.08
SeqPAN [27] 73.84 60.86 41.34 53.92
CBLN [54] - 61.13 38.22 -
MGPN [30] - 60.82 41.16 -
EAMAT [34] 74.19 61.69 41.96 54.45

Ours 74.43 62.20 42.52 55.03

where fXE(·) is a cross-entropy function, and (τs, τe) are the
ground-truth boundaries. Given the inner probability Pin, the
training objective is formulated by

Lin = fBXE(Pin,Yin) (19)

where fBXE(·) is a binary cross-entropy function. Yin =
{yini }Ti=1 ∈ {0, 1} is the ground-truth probability of each
frame being target action frame, and when τs ≤ i ≤ τe,
yini = 1, otherwise yini = 0. The overall objective is given
by

L = λ1Lbound + λ2Lin (20)

where λ1 and λ2 are hyper-parameters.

G. Discussion

The proposed method strategically categorizes actions into
two types and dynamically selects suitable modules for feature
learning, and this strategy has the potential application to other
video and language related tasks, such as Language-Guided
Video Segmentation [37]–[39], Visual Reasoning [40]–[43],
and Video Captioning [44]–[48]. In these tasks, extensive de-
signed modules have achieved promising performance. How-
ever, these modules often overlook the nuanced and varied
characteristics of actions, which require distinct neural archi-
tectures for precise modeling. The proposed dynamic pathway
feature learning strategy provides an opportunity to enhance
existing methods by integrating individual feature learning
modules tailored to different action types, making it a potential
generative method in video understanding.

IV. EXPERIMENTS

A. Datasets

Charades-STA. The Charades-STA dataset is built on the
Charades dataset [55] and contains 6,672 daily life videos.
The average duration of the videos is 29.76 seconds. There
are about 2.4 annotated segments per video, whose average
duration is 8.2 seconds. The whole dataset contains 16,128
samples (i.e., pairs of query and action segment), and 12,408
samples are split into the training set, and 3,720 samples are
into the testing set.

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE TACOS

DATASET.

Methods R@1; IoU ≥ µ
mIoU0.3 0.5 0.7

BPNet [58] 25.96 20.96 14.08 19.53
VSLNet [3] 29.61 24.27 20.03 24.11
I2N [4] 31.80 28.69 - -
SS [50] 41.33 29.56 - -
CPNet [29] 42.61 28.29 - 28.69
CBLN [54] 38.89 27.65 - -
ICG [52] 38.84 29.07 19.05 28.26
SMIN [36] 48.01 35.24 - -
CPN [53] 48.29 36.58 21.25 34.63
MGPN [30] 48.81 36.74 - -
EAMAT [34] 50.11 38.16 26.82 36.43

Ours 53.79 41.19 28.23 38.59

TACoS. The TACoS dataset is built on the MPII Cooking
Compositive dataset [56], which consists of 127 videos with
an average length of 4.79 minutes. There are around 148 anno-
tated segments per video. The whole dataset contains 18,818
samples, including 10,146 for training, 4,589 for validation,
and 4,083 for testing.

B. Metrics

We adopt two metrics for the performance evaluation: 1)
R@n; IoU ≥ µ, which denotes the recall of top-n predictions
at various thresholds of the temporal Intersection over Union
(IoU). It measures the percentage of predictions that have
IoU with ground truth larger than the threshold µ; 2) mean
averaged IoU (mIoU), which denotes the average IoU over all
the test samples. We set n = 1 and µ ∈ {0.3, 0.5, 0.7}.

C. Implementation Details

For language queries, we truncate each input sentence to
have a maximum of 30 words. We use C3D [32] for the TACoS
dataset and I3D [33] for the Charades-STA dataset to extract
video features. Adam [57] is adopted for optimization with an
initial learning rate of 5e-4, a linear decay schedule, and 50
maximum epochs. The loss weights λ1 and λ2 in Equation
20 are set to 1 and 10, respectively. The feature dimension
d is set to 512, the head number of multi-head self-attention
is set to 8, the scale number of LSTM blocks is set to 3,
and the kernel sizes of temporal convolutional blocks are set
to 3, 5, and 7. The numbers of LSTM Blocks and temporal
convolutional blocks in both the exploitation module and the
exploration module are set to 1 and 3, respectively. The kernel
sizes in Eq.(7) are set to 3, 5, 7, and 9.

D. Comparison with Other Methods

We compare our method with state-of-the-art methods.
These methods include both proposal-based methods (SS [50],
I2N [4], MAST [24], SMIN [36], CBLN [54], ICG [52],
MGPN [30]) and proposal-free methods (ACRM [51],
VSLNet [3], LGI [28], SeqPAN [27], CPN [53], DeNet [49],
CPNet [29], EAMAT [34]).
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TABLE III
ABLATION STUDIES ON THE CHARADES-STA DATASET.

Methods R@1; IoU ≥ µ
mIoU0.3 0.5 0.7

exploitation module only 73.23 59.36 40.68 52.29
exploration module only 73.63 59.85 41.40 53.47
exploitation w/o LML 70.91 55.43 33.46 49.98

exploration w/o TE 69.48 54.00 36.23 50.39
network parallel 72.95 58.68 38.14 52.57

Sum fusion 71.99 58.63 38.62 51.96
Multiply fusion 73.06 58.22 39.16 53.27

Concatenate fusion 73.57 60.88 41.22 54.14
Soft dynamic 74.65 61.18 41.53 54.34

Ours 74.43 62.20 42.52 55.03

Table I and Table II show the comparison results on the
Charades-STA and TACoS datasets, respectively. It is interest-
ing to observe the promising performance improvements of our
method in terms of all evaluation metrics on both two datasets,
clearly validating the superiority of the query-aware dynamic
pathway between different modules on video feature learning
to localize actions. Specifically, our method improves the
“R@1; IoU ≥ µ” by 0.28%, 0.51% and 0.52% on Charades-
STA, respectively, when IoU threshold µ is 0.3, 0.5 and 0.7. On
TACoS, the improvements of of “R@1; IoU ≥ µ” are 3.68%,
3.03% and 1.41%, respectively, when µ is 0.3, 0.5 and 0.7. As
for mIoU , the gains of 0.58% and 2.16% are achieved for the
Charades-STA dataset and TACoS dataset, respectively. The
TACoS dataset contains various language queries and different
variable-length target moments in videos, which makes it
more challenging. Our method achieves more improvements
on TACoS than Charades-STA, which further demonstrates the
superiority of our method in complex situations.

E. Ablation Studies

We perform in-depth analysis to evaluate each component
of our method on the Charades-STA and TACoS datasets, and
the results are shown in Table III and Table IV, respectively.

1) Effect of the exploitation/exploration module.: The pro-
posed dynamic pathway is a dynamic selection between an
exploitation module and an exploration module to handle
different kinds of actions. To evaluate the effectiveness of the
dynamic pathway, we need to first verify the performance of
the exploitation module and the exploration module separately,
without the dynamic pathway. The results are shown in the
first part of Table III and Table IV. We observe that the
exploitation module achieves 59.36% and 40.03% in terms of
“R@1; IoU ≥ 0.5” on the Charades-STA dataset and TACoS
dataset, respectively, and the exploration module achieves
59.85% and 40.01% in terms of “R@1; IoU ≥ 0.5” on the
Charades-STA dataset and TACoS dataset, respectively. Both
the exploitation module and the exploration module perform
comparably or better than some of the existing methods
(e.g.,VSLNet [3],CPN [53]), which demonstrates the effective-
ness of the exploitation module on handling the actions with
complex motion relationships and the exploration module on
handing the actions with salient postures.

2) Effect of the local motion learning network: To evaluate
the effect of the local motion learning network, we replace the

TABLE IV
ABLATION STUDIES ON THE TACOS DATASET.

Methods R@1; IoU ≥ µ
mIoU0.3 0.5 0.7

exploitation module only 52.88 40.03 27.24 37.64
exploration module only 51.86 40.01 26.99 37.04
exploitation w/o LML 40.98 29.21 18.52 28.84

exploration w/o TE 44.71 35.41 24.46 33.52
network parallel 48.98 38.28 25.96 35.82

Sum fusion 51.71 39.74 27.87 37.44
Multiply fusion 51.26 39.31 26.66 37.29

Concatenate fusion 52.28 40.78 27.91 38.31
Soft dynamic 54.04 42.29 27.64 38.98

Ours 53.79 41.19 28.23 38.59

local motion learning network in Section III-B2 with the global
motion learning network in Section III-B1 for comparison,
denoted as “exploitation w/o LML”. From Table I and Table II,
From Table III and Table IV, it is obvious that the local motion
learning network, the performance of all evaluation metrics
drops significantly on both datasets which demonstrates the
benefit of learning subtle motion changes to improve the
accuracy of boundary prediction.

3) Effect of the temporal expansion network: To evaluate
the effect of the temporal expansion network, we replace
the temporal expansion network in Section III-C2 with the
salient posture learning network in Section III-C1, denoted
as “exploration w/o TE”. From Table III and Table IV, we
also observe a large drop in performance without the temporal
expansion network, which suggests it is important to learn the
temporal dependency to expand posture frames to the action
segment.

4) Effect of different orders of networks: Both the exploita-
tion and exploration modules consist of sequential networks.
Specifically, the exploitation module has a sequence of a
global motion learning network and a local motion learning
network. The exploration module has a sequence of a salient
posture learning network and a temporal expansion network.
To analyze the effect of different network orders, we stack the
networks in parallel, denoted as “network parallel”, as shown
in the second part of Table III and Table IV. It is interesting
to observe that compared with the exploitation module and
exploration module, “network parallel” achieves worse results,
which demonstrates the superiority of the coarse-to-fine man-
ner in the exploitation module and the point-to-area manner
in the exploration module on learning video features.

5) Effect of the dynamic pathway.: As shown in the last
row “Ours” in Table III and Table IV, compared with the “ex-
ploitation module” and “exploration module”, the performance
is improved by adaptively selecting the exploitation module or
the exploration module based on the language query for each
input, which verifies the effectiveness of the proposed query-
aware adaptive selection module.

To further evaluate the effectiveness of the dynamic path-
way, we also design several methods of fusing the features
learned by the exploitation module and the exploration module
for comparison, denoted as “Sum fusion”, “Multiply fusion”
and “Concatenate fusion”. The “Sum fusion” indicates that
features from the exploitation module and the exploration
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Fig. 4. Results of different scale numbers in LSTM on the TACoS dataset.

module are summarized, and “Multiply fusion” indicates that
features from the exploitation module and the exploration
module are element-wise multiplied. The “Concatenate fusion”
means we concatenate the features of the exploitation module
and the exploration module, and “Soft dynamic” means we
sum the features of the exploitation module and the exploration
module based on their probabilities, which is implemented by
replacing Gumble-softmax with softmax of Eq.(13).

As shown in the third part of Table III and Table IV, we
observe that these fusion methods achieve little improvement
or even worse performance, compared with the exploitation
module or the exploration module, probably due to the redun-
dant information introduced by the exploitation module and
exploration module in feature learning, thus leading to inferior
performance. In contrast, our dynamic pathway succeeds in
selecting the appropriate pathway between the exploitation
module and exploration module according to the specific
language query, thus contributing to further improvements.

From Table IV, we observe that “Soft dynamic” achieves
better results on most evaluation metrics on the TACoS dataset,
probably due to the intricate and diverse action samples. How-
ever, the improvements are marginal compared with “Ours”.
Conversely, on the Charades-STA dataset in Table III, the “Soft
dynamic” achieves worse performance than “Ours”, and the
possible reason is that the redundant module brings noise.
Furthermore, the “Soft dynamic” necessitates the simultaneous
execution of both pathways during inference, which results in
double memory consumption and increased runtime, making
it less practical in real-world applications.

Discussion: We classify all actions into two classes: action
with complex motion relationships and action with salient
body posture, and adopt the exploitation module and explo-
ration module to learn features. For a certain sample, the
two modules are adaptively selected based on their input
language query. When the query actions are none of the two
classes, both the exploitation module and exploration module
get sub-optimal results, but the better one may be chosen.
Likewise, when the query action have both the complex motion
and salient body posture, both the exploitation module and
exploration module get fine results and the better one may be
chosen. Our dynamic pathway strategy navigates within the
constrained solution space to identify the better pathway.
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Fig. 5. Results of different scale numbers in temporal convolution on the
TACoS dataset.
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Fig. 6. Results of different loss weights on the TACoS dataset.

F. Parameter Analysis

1) Temporal Scale Number of LSTM: To analyze the effect
of the temporal scale number of LSTM (i.e., S in Eq. (3)) on
the performance, we conduct experiments by using different
numbers of temporal scale, and the results are shown in
Figure 4. As the scale number increases, the performance first
increases gradually and then decreases, which suggests that
multiple temporal scales of LSTM can handle various duration
of the same actions, but too many scales may introduce
redundant information not related to the target action.

2) Temporal Scale Number of Convolution: To evaluate the
effect of temporal scale number of convolution (i.e., K in
Eq. (7)), different numbers of kernels are applied, and the
results are shown in Figure 5. It is obvious that more different
kernels help improve the accuracy, but too many kernels will
introduce noisy information to hurt the performance.

3) Loss Weight: To further evaluate the effectiveness of the
training losses, we tune the hyper-parameters λ1 and λ2 in
Eq. (20) in the range of [1, 12]. Figure 6 shows the results of
different values of λ1 and λ2. We observe that the performance
drops as λ1 increases. In contrast, the performance improves
along with the increasing λ2 until reaches the maximum. It is
interesting that the value of λ2 is 10 times that of λ1, which
suggests that the per-frame of inner action prediction gives
strong support for boundary prediction.

G. Qualitative Results

We visualize several examples of action localization results
in Figure 7, where “Ours (exploitation module)” denotes the
results predicted by the exploitation module, “Ours (explo-
ration module)” denotes the results predicted by the explo-
ration module, and “X” denotes the selection path, estimated
by the query-aware adaptive selection module.
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Fig. 7. Examples of action localization results. “Ours (exploitation module)” denotes the results predicted by the exploitation module, “Ours (exploration
module)” denotes the results predicted by the exploration module, and “X” denotes the selection path, estimated by the query-aware adaptive selection module.

For the first example shown in Figure 7 (a), the action “The
person scoops the crumbs onto the cutting board and sweeps
them into the trash” contains complex motion relationships,
and our method successfully searches the action segment by
selecting the appropriate exploitation module.

For the second example shown in Figure 7 (b), the action
“a person is sitting on a chair using a tablet” has several
salient body postures that are distinguishable for classification,
so the exploration module is selected for localization in our
method. Furthermore, it is interesting to observe that both the
exploitation module and the exploration module achieve good
results, since this action is simple and easy to be localized.

For the third example shown in Figure 7 (c), we observe
that the exploitation module predicts the action boundaries
more closer to the ground truth. But our method selects the
exploration module, which estimates a wrong ending boundary
of the target action segment compared with the ground truth.
To go further, we find that the ending boundary of the ground
truth segment is wrongly located at the time when the person
is standing. So the ground truth annotation is biased, however,
the selected exploration module still succeeds in capturing the
action of “sitting on sofa holding a phone” and estimating
a right truly ending boundary of the action, which further
demonstrates the necessity that different actions should be
handled by different modules.

For the fourth example shown in Figure 7 (d), both the
exploitation module and the exploration module predict wrong
boundaries of the target action “putting shoes”, making it
useless of the dynamic pathway selection of our method.
This demonstrates the weakness of our methods on fine-
grained feature learning that requires finding small clues on
the complex backgrounds. For the fourth example shown in
Figure 7 (d), both the exploitation module and the exploration
module do not accurately predict the boundaries of the target
action “putting shoes”, so the dynamic selection fails. This
demonstrates the weakness of our methods on the fine-grained
action localization, which requires capturing fine-grained vi-
sual and motion clues for prediction.

V. CONCLUSION

We have presented a novel dynamic pathway method be-
tween different modules to learn query-aware video features
for language-driven action localization. Our method succeeds
in flexibly and adaptively selecting a better feature learning
path between an exploitation module and an exploration mod-
ule for different kinds of actions described by the language
queries. The exploitation module works in a coarse-to-refine
manner and is able to handle the actions with coarse semantic
granularities and complex motion changes of multiple sub-
actions. The exploration module functions in a point-to-region
diffusion fashion and is able to deal with the actions with fine
semantic granularities and salient body postures. Experiments
on the Charades-STA dataset and TACoS dataset validate the
effectiveness of our method. In future work, we plan to design
a more flexible dynamic architecture using activate learning to
actively search appropriate modules.
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