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Abstract—When applying a trained image-text matching model
to a new scenario, the performance may largely degrade due to
domain shift, which makes it impractical in real-world applications.
In this paper, we make the first attempt on adapting the image-
text matching model well-trained on a labeled source domain
to an unlabeled target domain in the absence of source data,
namely, source-free image-text matching. This task is challenging
since it has no direct access to the source data when learning to
reduce the domain shift. To address this challenge, we propose
a simple yet effective method that introduces uncertainty-aware
learning to generate high-quality pseudo-pairs of image and text
for target adaptation. Specifically, starting with using the pre-
trained source model to retrieve several top-ranked image-text
pairs from the target domain as pseudo-pairs, we then model
uncertainty of each pseudo-pair by calculating the variance of
retrieved texts (resp. images) given the paired image (resp. text)
as query, and finally incorporate the uncertainty into an objective
function to down-weight noisy pseudo-pairs for better training,
thereby enhancing adaptation. This uncertainty-aware training
approach can be generally applied on all existing models. Extensive
experiments on the COCO and Flickr30K datasets demonstrate
the effectiveness of the proposed method.

Index Terms—Source-free adaptation, uncertainty-aware learn-
ing, image-text matching

I. INTRODUCTION

MAGE-text matching has achieved remarkable progress in

a variety of applications, such as cross-modal retrieval [1],
[2]. [3]. [4]. [5]. [6], image captioning [7], [8], [9], [10],
[11], and visual question answering [12], [13], [14], [15],
[16]. Existing methods of image-text assume that the training
data and test data all come from the same distribution, which
rarely holds true in real-world applications. Directly applying
a well-trained image-text matching model to a new scenario
(target domain) lying in different data distribution from the
training instances (source domain) easily suffers from severe
performance degradation. Such distribution discrepancy termed
as domain shift results from both visual and language variations.
Accessing both labeled source and unlabeled target data can
better characterize the domain shift, however, it is a major
bottleneck for real-world deployment scenarios, due to the
source data privacy and limited memory storage in small
devices. To that end, we propose a source-free adaptation
framework of image-text matching, where only the pre-trained
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Source Data: paired images and texts

Target Data: unpaired images and texts

Testing on various scenarios

Fig. 1: Illustration of the source-free image-text matching
framework. Given an image-text matching model well-trained
on the source data and unlabeled target data, the goal of source-
free image-text matching is to adapt the source model to the
target domain.

source model and the unlabeled target data are available during
training, as illustrated in Fig. 1.

Under this framework, we propose an uncertainty-aware
learning method, which generates reliable pseudo image-text
pairs to achieve good adaptation of the source model to the
target domain. Specifically, we use an image-text matching
model well-trained on the source domain to retrieve the most
matched image-text pairs from the target domain, called pseudo-
pairs of image and text, as training samples to fine-tune the
source model for adaptation. However, due to the domain
shift caused by applying a trained image-text matching model
to a new scenario, these pseudo-pairs are noisy, referring to
alignment errors present in multimodal data. Some relevant
methods [17], [18] have also explored such a similar problem,
but with different motivations and methodologies. Under such
noisy data conditions, the performance of adaptation may
witness a substantial drop. In some related approaches [19],
[20], [21], [22], variance has been widely adopted as a common
method for quantifying uncertainty, owing to its simplicity and
popularity in statistical science. These approaches investigate
the relationship between uncertainty and noisy data, with
researchers considering uncertainty as an indicator of the quality
of noisy data. Due to the low quality of noisy data, noisy labels
could bring more uncertainty. Inspired by that, we introduce
uncertainty information to measure the noise of each pseudo-
pair, where the higher the uncertainty is, the more serious the
noise is. The uncertainty of each pseudo-pair is represented by
the variance of the retrieved texts (resp. images) from the target
domain given the pseudo-paired image (resp. text). Finally, we
incorporate the uncertainty into training objective to penalize
the pseudo-pairs with high uncertainty to update the model,
and thus down-weight noisy pseudo-pairs to enhance the model
adaptation to the target. It is worth noting that our method is
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Fig. 2: Overview of the proposed source-free image-text matching method by using uncertainty-aware learning.

a plug-and-play module compatible with all existing image-
text matching models, due to the fact that our pseudo-paired
uncertainty can be calculated offline, and our method enhances
the adaptability of these models to new scenarios with different
data distributions.

In summary, our contributions are: (1) We introduce a
source-free adaptation framework for image-text matching to
adapt a source model well to a target domain without source
data. (2) We propose an effective uncertainty-aware learning
method for generating high-quality pseudo-pairs to facilitate
target adaptation. (3) Extensive experiments on the COCO
and Flickr30K datasets demonstrate the effectiveness of the
proposed method with significant improvements.

1I. THE PROPOSED METHOD
A. Overview

We propose a source-free adaptation framework for image-
text matching, allowing the adaptation of a source model to a
target domain without accessing the source data. Our method
includes two stages: pseudo-pair generation and source-model
adaptation. In the first stage, we retrieve top-k texts/images with
the highest similarity scores from the target domain, based on an
image-text matching model trained on the source domain. We
then measure each pseudo-pair’s uncertainty by calculating the
variance of retrieved samples. In the second stage, we fine-tune
the source model using these pseudo-pairs, incorporating their
uncertainties into the training loss to penalize noisy pseudo-
pairs with high uncertainty, thus ensuring effective adaptation.
Fig. 2 illustrates the overview of our method.

B. Pseudo-pair Generation

Image-to-Text Retrieval. We apply the image-text matching
model trained on the source domain to the target domain to
generate pseudo-pairs of image and text. Specifically, for a
given image x; from the target domain, we feed it into the
image-specific network g of the given source model M; to
generate the visual embedding feature g(x;). Similarly, for a
language description y; from the target domain, we employ the
text-specific network f of the given source model to generate
the textual embedding feature f(y;). We retrieve the top-K texts
(resp. images) from all the candidate texts (resp. images) by
ranking their similarity scores to a specific target image (resp.
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text), and then select the top-ranking pair to form the initial
pseudo-pairs for target domain, which are used for adapting
the source model.

Pseudo-pair Uncertainty. The generated pseudo-pairs con-
tain noise due to domain shift, which can mislead source model
adaptation and degrade performance on the target domain. To
mitigate this, we introduce uncertainty as a measure of noise
for each pseudo-pair. Higher uncertainty values indicate lower
reliability and greater noise. We model the uncertainty of each
pseudo-pair by calculating the variance of the retrieved texts
(resp. images) given the pseudo-paired image (resp. text) as
query. Specifically, the weighted average textual embedding
features for the top-K (K = 300) retrieved texts given a query
image are calculated as

T Zszl wif(yiT)
,U, - T <K
iz Wi

where w; denotes the initial weight of each retrieved candidate
text. The weights are assigned based on candidate rankings
using w; = 1 — ’l“(j where r; is the rank (with r; = 1 for the
highest-ranked candidate), ensuring all weights are within [0, 1].
In this case, a higher initial weight is assigned to a retrieved text
with high-ranking score, while a lower initial weight is assigned
to one with low-ranking score. This weighting strategy stems
from the notion that the retrieved texts with higher ranking
scores are generally greater relevant than their lower-ranking
counterparts.

Symmetrically, the weighted average embedding visual
features p! for the top-K retrieved images given a query text
can be formulated by interchanging f(y!) and g(x!) in Eq. 1.
Utilizing these dual-weighted average embedding features, their
respective variances can be determined as
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where V7 represents the variance of top-K retrieved texts for
a given query image, which is regarded as the uncertainty value
of the top-ranking pseudo-pair from text retrieval against this
image, and V! is the variance of top-K retrieved images for a
specific query text, represented by the uncertainty value of the
top-ranking pseudo-pair from image retrieval against this text.
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C. Source-model Adaptation

We use the generated pseudo-pairs as training samples to
fine-tune the source model, in which we incorporate uncertainty
information into the triplet ranking loss to down-weight the con-
tribution of noisy pairs with high uncertainty, thereby achieving
better adaptation results. Concretely, we first map the image and
its pseudo-paired text into a common space by two modality-
specific networks g and f, respectively. And then the similarity
of pseudo-pair is calculated by S(I,T") = cosine(f(z;), g(y;))-
Finally, the uncertainty-based triplet loss is defined as

;Lriplet = [Wu{ncer ’ (S([? T\) - S(Iv T)) + m]+

~ 3
+[W1Tncer(S(IvT)is(IﬂT))+m]+a @

where 7 and T denote the negative texts and images in a mini-
batch, m is a fixed margin that represents the minimum accept-
able distance between the anchor-positive and anchor-negative
pairs, and W1 . and WZI _ represent the weights assigned
to pseudo-pairs from image to text and from text to image
within each mini-batch, respectively. Particularly, each pseudo-
pair is assigned a weight based on its corresponding uncertaintjy,
calculated by W/, ... = Aexp~PV" and W er = Nexp PV,
where A and 3 are adjustable parameters. The allocation of
these weights is achieved by making the weight of each pseudo-
pair inversely proportional to its corresponding uncertainty.
During training, we fine-tune the pre-trained source model
using the uncertainty-based triplet loss Lj., ., for adaptation
on generated pseudo-pairs. During testing, the inference process
remains as efficient as the source methods, without introducing

any additional computations.

III. EXPERIMENTS
A. Implementation details

Datasets. To evaluate the effectiveness of the proposed
method, we conduct extensive experiments using three datasets:
Flickr30K [23] dataset, COCO [24] dataset and laprtc-12 [25]
dataset.

Evaluation Metrics. We evaluate the performance of image-
text matching by using F1-Score and Recall@k. The F1-
Score balances Precision and Recall, ensuring a comprehensive
evaluation without dominance by a single metric. Recall@k
(R@k) measures the proportion of correct matches within the
top-k results, with k set to 1, 5, and 10. The sum of all R@k
values is used to evaluate the overall matching performance,
represented as Rsum.

Implementation Details. We construct two source-free
adaptation tasks: laprtc-12—Flickr30K, Flickr30K—COCO,
where Iaprtc-12—Flickr30K represents that the image-text
matching model trained on laprtc-12 is adapted to Flickr30K,
the same to Flickr30K—COCO. For Iaprtc-12—Flickr30K,
there exist large domain shifts in both images and texts,
due to the difference in both image collection resource and
textual description topic between laprtc-12 and Flickr30K. For
Flickr30K—COCO, there exist significant domain shifts across
two modalities, due to the difference in data set size and the
number of target categories compared with another adaptation
task.
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B. Comparisons with state of the arts

To evaluate the adaptation performance of our method, we
compare our method with the method that directly applies the
source model to the target domain, denoted as VSE++ [26],
CAMERA [27], GPO [28], SCAN [29], SGR [30], SAF [30],
NUIF [31] and TVRN [32]. To evaluate the effectiveness of the
proposed uncertainty learning, we compare our method with the
method that fine-tunes the source model using the pseudo-pairs
from the target domain without uncertainty-aware learning,
denoted as “VSE++ with fine-tuning”, “CAMERA with fine-
tuning”, “GPO with fine-tuning”, “SCAN with fine-tuning”,
“SGR with fine-tuning”, “SAF with fine-tuning”, “NUIF with
fine-tuning” and “TVRN with fine-tuning”.

Table I show the comparison results using the six base models
on the Iaprtc-12—Flickr30K and Flickr30K—COCO tasks,
respectively. From these tables, we observe that our method
outperforms the method that directly applies the source model
in all tasks, which demonstrates that our method succeeds in
adapting the source model well to target domain by reducing
the domain shift.

C. Comparison to pre-trained model

We compare our method with the large pre-trained models
CLIP [33], BLIP [34] and OpenCLIP [35], all of which are
trained on extensive image-text pairs and exhibit impressive
zero-shot generalization capabilities. In our experiments, we
utilize the pre-trained CLIP model with a ViT-B/32 backbone,
BLIP with a ViT-B/16 backbone, and OpenCLIP with a ViT-
H-14378-quickgelu backbone as the source models to generate
pseudo-paired training data on the COCO and Flickr30K, which
are then used for fine-tuning. From Table II, we observe that our
method outperforms others on most evaluation metrics across
both datasets, demonstrating the effectiveness of incorporating
uncertainty in each pseudo-pair to enhance the adaptability of
pre-trained models to new scenarios with different distributions.

D. Ablation Studies

To investigate the effectiveness of each component, we
introduce several variants of our method for comparison on
Flickr30K—COCO, using the base model VSE++.

Effect of uncertainty in the loss. To evaluate the effective-
ness of modeling uncertainty in the triplet loss, we compare
our method with the following methods: (1) “w/o W . "
removing the uncertainty W2 .. of the pseudo-pairs that are
generated by retrieving texts given an image query; (2) “w/o
Wr .. removing the uncertainty W[ = of the pseudo-
pairs that are generated by retrieving images given a text query.
As reported in Table III, it is obvious that the performances
of these two methods degrade, which verifies the benefit of
incorporating pseudo-pair uncertainty into both terms in the
triplet loss.

Effect of different calculations of uncertainty. To evaluate
the effectiveness of using variance to calculate uncertainty in
our method, we introduce the following uncertainty calculations
for comparison: (1) “uncertainty based on similarity”: the
uncertainty of pseudo-pair is calculated by the similarity
score between the image and text in the pseudo-pair; (2)
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TABLE I: Comparison results of different methods using the six base models on Iaprtc12—Flickr30K and Flickr30K—COCO.
The best results are in bold.

Taprtc12—Flickr30K Flickr30K—COCO

Methods Image-to-Text Text-to-Image Rsum F1- Image-to-Text Text-to-Image Rsum F1-
R@l R@5 R@I0 | R@] R@5 R@I0 Score | R@l R@5 R@]I0 | R@l R@5 R@I0 Score

VSE++ [26] 7.8 20.1 27.1 4.1 132 19.3 91.6 35.5 7.4 19.8 29.0 4.7 14.2 21.2 96.4 50.1

VSE++ with fine-tuning 9.6 22.0 30.4 5.0 15.9 22.6 105.5 | 50.5 7.5 20.9 30.3 5.5 15.6 229 102.7 | 54.4

VSE++ with Ours 104 223 35.0 5.3 15.7 23.2 108.1 | 57.0 8.2 21.9 31.3 5.7 16.6 24.3 108.0 | 62.4
CAMERA [27] 183 409 52.7 11.4 29.0 38.6 1909 | 105.8 | 263 495 60.5 18.2 39.2 50.4 244.1 148.3
CAMERA with fine-tuning | 23.1  46.6 59.3 15.2 34.8 45.1 224.1 1299 | 285 539 65.1 21.2 442 55.5 268.4 | 166.0
CAMERA with Ours 237  46.8 59.6 15.6 35.8 46.2 227.6 | 134.6 | 29.5 55.6 67.1 21.6 45.3 56.8 2758 | 171.7
GPO [28] 314  58.6 68.5 20.7 424 52.6 2742 | 1653 | 30.6 545 64.4 20.0 413 52.7 263.5 | 160.9
GPO with fine-tuning 387 649 74.8 26.8 50.5 61.7 317.4 | 2002 | 353 61.7 72.5 25.4 49.7 60.9 305.5 | 193.1
GPO with Ours 409  65.6 76.4 26.5 50.7 62.3 3225 | 208.8 | 364  62.6 73.2 25.6 49.6 61.5 309.0 | 194.8
SCAN [29] 125 275 39.3 6.2 16.9 239 126.3 | 62.9 153 337 455 14.1 34.1 41.6 181.6 | 109.2
SCAN with fine-tuning 138 31.8 43.6 8.5 22.6 31.9 1522 | 79.6 19.0 427 55.5 13.9 327 43.8 207.5 | 116.9
SCAN with Ours 143 34.1 44.0 9.0 23.7 32.0 157.0 | 88.4 203 439 56.7 14.5 334 44.3 213.2 | 121.6
SGR [30] 152 325 43.8 8.4 19.3 27.1 146.3 | 75.5 254 487 59.6 17.7 37.7 48.4 237.6 | 140.6
SGR with fine-tuning 200 414 53.7 11.5 27.1 36.4 190.0 | 1029 | 304 575 69.9 20.2 42.6 54.5 275.1 164.0
SGR with Ours 208 42.1 53.5 12.4 28.0 37.1 1939 | 1064 | 318 579 70.0 204 43.4 54.8 278.3 | 1744
SAF [30] 164 323 434 6.8 17.5 24.5 1409 | 69.7 213 442 55.6 15.9 35.1 46.0 2182 | 129.0
SAF with fine-tuning 19.8 399 50.3 114 254 34.4 181.2 | 98.9 29.1 549 67.1 18.9 41.1 52.3 263.4 | 156.0
SAF with Ours 19.8 415 52.0 11.3 26.1 35.3 186.0 | 99.6 30.2  57.1 69.0 19.4 41.7 53.3 270.7 | 163.9
NUIF [31] 359  60.2 69.0 23.5 429 52.8 284.3 | 173.1 287  46.0 56.2 23.0 38.5 47.8 2402 | 1374
NUIF with fine-tuning 364 64.5 73.4 26.7 449 62.5 308.4 | 194.1 337 499 61.5 24.6 44.7 51.7 266.1 157.1
NUIF with Ours 384  65.1 76.2 26.9 48.9 64.5 320.0 | 206.5 | 36.2 549 63.8 25.2 45.1 52.6 2778 | 174.7
TVRN [32] 248 348 452 14.8 24.0 29.5 173.1 | 973 263  45.0 56.1 21.4 37.8 47.7 2343 | 135.6
TVRN with fine-tuning 27.8 381 46.9 15.7 26.2 29.8 184.5 | 99.3 298 494 60.1 23.7 41.6 49.8 2544 | 1413
TVRN with Ours 308 435 49.0 17.3 28.9 314 2009 | 110.5 | 323 535 63.6 24.8 41.9 51.2 267.0 | 1594

TABLE II: Comparison of CLIP, BLIP and OpenCLIP on

positive adaptation.
COCO and Flickr30K dataset. The best results are in bold.

COCO Flickr30K Original image
Method Image-to-Text Text-to-Image Tmage-to-Text Text-to-Image
R@T R@5 R@10 R@1 R@5 R@I0 R@I1 R@5 R@I0 R@I[ R@5 R@I0
CLIP 50.2 74.6 83.6 30.4 56.0 66.8 79.0 943 98.2 58.0 82.9 89.9
CLIP with fine-tuning 62.6 85.3 91.3 46.6 734 82.8 86.7 97.2 98.8 74.3 92.9 96.3
CLIP with Ours 62.2 85.3 92.1 47.5 74.7 83.6 87.6 97.5 99.1 75.2 93.5 96.6
BLIP 57.4 81.1 88.7 414 66.0 75.3 76.0 92.8 96.1 58.4 80.0 86.7
BLIP with fine-tuning 64.1 86.8 924 49.1 75.7 84.7 84.2 96.1 96.9 749 90.5 944
BLIP with Ours 65.9 87.1 92.9 51.2 76.0 84.9 83.9 96.7 97.2 75.4 91.4 94.6 Pseudo-paired text
OpenCLIP _ 91 827 898 | 466 720 806 [ 831 959 987 | 715 913 950 Ayoung boy leaning | A woman is standing | A baby giraffe anda | People are playing A man emphasizing the
OpenCLIP with fine-tuning | €5.2 874 928 | 519 757 840 | B89 985 992 | 763 947 980 up against on her skis on a slope. | baby zebra stand near a | Frisbee or walking near | smartphone he is
OpenCLIP with Ours 654 875 006 | 543 762 847 | 897 985 993 | 779 949 983 a bag of luggage. ereen hut. 2 beach holding.
Weight of pseudo-pair:| Weight of pseudo-pair:| Weight of pseudo-pair:| Weight of pseudo-pair:| Weight of pseudo-pair:
. . . 0.3276 0.4761 0.2818 0.0438 0.0273
TABLE III: Results of ablation studies on Flickr30K—COCO

task using the base model VSE++. The best results are in bold.  Fjg. 3. Example of the success and failure cases on

Methods Tmage-to-Text Text-to-Image Flickr30K—COCO using the base model TVRN.
cthods R@I R@5 R@I0 | R@I R@5 R@I0

wlo WI = 77 217 308 56 160 23.1
Wio Wl on 76 213 303 54 162 235
uncenaﬁ;;e;msed on similarity 7.1 21.4 30.6 5.6 16.3 24.0 Iv. QUALITATIVE RESULTS
uncertainty without weight 7.7 21.1 31.0 5.7 16.6 23.9 i L X
all selection of negative samples 73 209 304 56 164 240 In Fig. 3, we show qualitative results on Flickr30K—COCO
random selection of negative samples | 7.3 21.7 30.3 5.6 16.5 24.1 .
s = e 1931327 1es— 13— using the base model TVRN, the first three are success cases

while the last two are failure cases. Successful cases have
uncertainty weights about ten times smaller than failure cases,

“uncertainty without weight”: the weight of pseudo-pair is
removed to calculate the mean and the variance of pseudo-pair
as uncertainty. From Table III, we observe that our method
outperforms on most evaluation metrics compared with the
two variants, indicating that it is beneficial to mitigate the
negative impact of noisy pseudo-pairs by introducing pseudo-
pair weights to calculate the uncertainty.

Effect of different strategies of selecting negative samples.
To explore which selection strategy is more effective for
uncertainty-aware learning, we compare our method with the
following variants: (1) “all selection of negative samples”: all
the negative samples in a mini-batch are used for training; (2)
“random selection of negative samples”: some negative samples
are randomly selected from a mini-batch for training. From
Table III, it is interesting to notice that our method achieves
the best results on most metrics, suggesting that mining harder
negative samples with higher uncertainty helps enhance the

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

indicating that high-uncertainty pseudo-pairs are assigned
smaller weights, reducing their impact during training. By
quantifying pseudo-pair uncertainty, our method avoids confir-
mation bias and self-reinforcing errors.

V. CONCLUSIONS

We have presented a source-free image-text matching ap-
proach that adapts a pre-trained model from a source domain to
an unlabeled target domain without accessing the source data.
To reduce the domain shift from different data distributions, we
propose selecting reliable pseudo image-text pairs for model
adaptation by calculating variance among retrieved candidates
and incorporating uncertainty into the ranking loss to down-
weight noisy pairs with high uncertainty. Extensive experiments
validate the effectiveness of our method, which is compatible
with existing image-text matching approaches.
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